Skip to main content
Log in

Experimental and Theoretical Study on Arrival Times and Effective Velocities in the Case of Long-Range Propagation of Acoustical Pulses Along the Shelf Edge in a Shallow Sea

  • OCEAN ACOUSTICS. HYDROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

An experimental study aimed at the measurement of arrival times and effective velocities of acoustical pulses propagating approximately along the edge of the continental shelf was conducted in the Sea of Japan in early autumn. In a posteriori theoretical analysis and modeling of sound propagation in this experiment modal structure of acoustical field along the path was described and a number of general conclusions on the formation of such fields in course of sound propagation over distances of tens and hundreds of kilometers were formulated. An algorithm for predicting effective velocities of long-range propagation of acoustical pulses in shallow water was developed on the basis of these conclusions. The algorithm is based on the averaging of group velocities of the first modal component of the pulse over the entire track. It was shown that on the considered path of approximately 136 kilometers horizontal refraction is one of the major factors contributing to the dispersion of pulsed signals. This effect also causes additional delays as compared to the sound propagation along the respective geodesic path on the Earth’s surface. Implications of the importance of taking the horizontal refraction into account in estimation of arrival times in the modeling of long-range propagation and the solution of acoustical ranging problems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Morgunov, A. A. Golov, A. V. Burenin, and P. S. Petrov, Acoust. Phys. 65, 537 (2019).

    Article  ADS  Google Scholar 

  2. V. A. Akulichev, V. V. Bezotvetnykh, A. V. Burenin, E. A. Voitenko, and Yu. N. Morgunov, Acoust. Phys. 56, 47 (2010).

    Article  ADS  Google Scholar 

  3. Yu. N. Morgunov, V. V. Bezotvetnykh, A. V. Burenin, and E. A. Voitenko, Acoust. Phys. 62, 350 (2016).

    Article  ADS  Google Scholar 

  4. R. C. Spindel, J. Na, P. H. Dahl, S. Oh, C. Eggen, Y. G. Kim, V. A. Akulichev, and Y. N. Morgunov, IEEE J. Oceanic Eng. 28, 297 (2003).

    Article  ADS  Google Scholar 

  5. F. B. Jensen, M. B. Porter, W. A. Kuperman, and H. Schmidt, Computational Ocean Acoustics (Springer, New York, 2011).

    Book  Google Scholar 

  6. B. G. Katsnelson, V. G. Petnikov, and J. F. Lynch, Fundamentals of Shallow Water Acoustics (Springer, New York, 2012).

    Book  Google Scholar 

  7. M. Badiey, B. G. Katsnelson, Y.-T. Lin, and J. F. Lynch, J. Acoust. Soc. Am. 129, EL141 (2011).

    Article  Google Scholar 

  8. M. Badiey, B. G. Katsnelson, J. F. Lynch, S. Pereselkov, and W. L. Siegmann, J. Acoust. Soc. Am. 117, 613 (2005).

    Article  ADS  Google Scholar 

  9. B. G. Katsnel’son and A. Yu. Malykhin, Acoust. Phys. 58, 301 (2012).

    Article  ADS  Google Scholar 

  10. P. S. Petrov, S. A. Sergeev, and A. A. Tolchennikov, Acoust. Phys. 65, 702 (2019).

    Article  Google Scholar 

  11. Jun Tang, P. S. Petrov, Shengchun Piao, and S. B. Kozitskiy, Acoust. Phys. 64, 225 (2018).

    Article  ADS  Google Scholar 

  12. V. A. Akulichev, V. V. Bezotvetnykh, J. N. Morgunov, and Yu. A. Polovinka, Dokl. Earth Sci. 432, 775 (2010).

    Article  ADS  Google Scholar 

  13. A. N. Rutenko, D. I. Borovoi, V. A. Gritsenko, P. S. Petrov, V. G. Ushchipovskii, and M. Boekholt, Acoust. Phys. 58, 326 (2012).

    Article  ADS  Google Scholar 

  14. Yu. N. Morgunov, V. V. Bezotvetnykh, A. V. Burenin, E. A. Voitenko, and A. A. Golov, Acoust. Phys. 64, 190 (2018).

    Article  ADS  Google Scholar 

  15. M. Y. Trofimov, A. D. Zakharenko, and S. B. Kozitskiy, Comput. Phys. Commun. 207, 179 (2016).

    Article  ADS  Google Scholar 

  16. P. S. Petrov, S. V. Prants, and T. N. Petrova, Phys. Lett. A 381, 1921 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. D. Collins and E. K. Westwood, J. Acoust. Soc. Am. 89 (3), 1068 (1991).

    Article  ADS  Google Scholar 

  18. R. Burridge and H. Weinberg, in Wave Propagation and Underwater Acoustics (Springer, Berlin, 1977), p. 86.

    Google Scholar 

Download references

Funding

This study was partially supported by the Program of Russian Academy of Sciences “New challenges of the Earth’s climate system”, project no. 18-1-004. The authors were also supported by grants of Russian Foundation for Basic Research (RFBR) under the contracts nos. 18-05-00057_a and 18-35-20081_mol_a_ved.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. S. Petrov or A. A. Golov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, P.S., Golov, A.A., Bezotvetnykh, V.V. et al. Experimental and Theoretical Study on Arrival Times and Effective Velocities in the Case of Long-Range Propagation of Acoustical Pulses Along the Shelf Edge in a Shallow Sea. Acoust. Phys. 66, 21–32 (2020). https://doi.org/10.1134/S106377102001008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377102001008X

Keywords:

Navigation