Skip to main content
Log in

Features of the Electric Response of Rocks to Vibration under Weak Nonuniform Fluid Saturation Conditions

  • ACOUSTICS OF STRUCTURALLY INHOMOGENEOUS SOLID MEDIA. GEOLOGICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract—The specific features of the electrical response of rocks to vibration in the 0.7–10 kHz frequency range were studied for Berea sandstone cores weakly and inhomogeneously saturated with polar and nonpolar fluids. Fluid was added to the samples with a pipette through a puncture in a protective film. In this case, a strong lateral saturation inhomogeneity was created at the lateral edge of the cylindrical core. During saturation, kerosene (as the nonpolar fluid) and saline aqueous solutions (as the polar fluid) were used in a volume of ~6% of the pore space. The physical modeling results showed that the electric response contains intense second harmonics, the amplitude of which at low frequencies is comparable to the amplitude of the first harmonics. When a 0.5% NaCl solution was added, a significant change in the electrical response in comparison to the response of the core in the initial state was observed only in the 5.45–7.15 kHz frequency range. When kerosene and a 0.05% saline solution was added to the core, an equally strong increase in the electrical response was observed at all frequencies; however, the nature of the spectral change and its temporal dynamics for polar and nonpolar fluids significantly differ. The presented physical modeling results will be useful for understanding seismoelectric processes in a heterogeneous, structurally inhomogeneous natural massif, and may also be the basis for new remote technologies to determine the type of rock saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. N. Uvarov, Geofiz. Zh. 38 (6), 180 (2016).

    Google Scholar 

  2. L. Blau and L. Statham, US Patent No. 2054067 (1936).

  3. A. G. Ivanov, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., No. 5, 699 (1940).

  4. A. G. Ivanov, Dokl. Akad. Nauk SSSR, No. 1, 41 (1939).

    Google Scholar 

  5. Ya. I. Frenkel’, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 8 (4), 133 (1944).

    Google Scholar 

  6. M. A. Biot, J. Acoust. Soc. Am. 28, 168 (1956).

    Article  ADS  Google Scholar 

  7. S. R. Pride and S. Garambois, J. Eng. Mech. 131, 898 (2005).

    Article  Google Scholar 

  8. S. R. Pride, Phys. Rev. B: Condens. Matter Mater. Phys. 50, 15678 (1994).

    Article  ADS  Google Scholar 

  9. B. S. Svetov, Fundamentals of Geo-Electrics (LKI, Moscow, 2008) [in Russian].

  10. M. S. Antsiferov, Dokl. Akad. Nauk SSSR 121, 827 (1958).

    Google Scholar 

  11. E. I. Parkhomenko, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 2, 68 (1964).

  12. E. I. Parkhomenko and I. V. Gaskarov, Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 9, 88 (1971).

    Google Scholar 

  13. E. I. Parkhomenko, in Physical Properties of Rocks under High Pressures and Temperatures, Ed. by E. A. Lyubimov (Nauka, Moscow, 1977), p. 201 [in Russian].

    Google Scholar 

  14. O. A. Ageeva, B. S. Svetov, G. Kh. Sherman, and S. V. Shipulin, Geol. Geofiz. 4, 1251 (1999).

    Google Scholar 

  15. O. A. Ageeva, Geofizika, No. 1, 16 (2008).

  16. N. I. Migunov and A. A. Kokorev, Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 6, 114 (1977).

    Google Scholar 

  17. B. Chen and Y. Mu, J. Geophys. Eng. 2, 222 (2005).

    Article  ADS  Google Scholar 

  18. S. S. Simonyan, Izv. Akad. Nauk Arm. SSR, Estestv. Nauki 40 (3), 56 (1987).

    Google Scholar 

  19. G. Ya. Chernyak, Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 7, 117 (1975).

    Google Scholar 

  20. G. Ya. Chernyak, Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 2, 108 (1976).

    Google Scholar 

  21. G. Ya. Chernyak, Electromagnetic Methods for Hydrogeology and Engineering Geology (Nedra, Moscow, 1987) [in Russian].

    Google Scholar 

  22. V. G. Teren’t’ev, Zap. Gorn. Inst. 130, 13 (1992).

    Google Scholar 

  23. N. M. Neishtadt and L. V. Eppel’baum, Ross. Geofiz. Zh., Nos. 51–52, 63 (2012).

    Google Scholar 

  24. V. A. Zeigarnik and V. N. Klyuchkin, in Proc. 3rd All-Russian Seminar-Conference on Triggering Effects in Geosystems, Moscow, June 16–19,2015, Ed. by V. V. Adushkin and G. G. Kochryan (Geos, Moscow, 2015), p. 252 [in Russian].

  25. I. G. Moskovskii, O. M. Balaban, O. S. Fedorova, and A. V. Kochetkov, Naukovedenie 7 (1) (2015). http://naukovedenie.ru/PDF/ 04TVN115.pdf.

  26. A. N. Kamshilin and P. A. Kaznacheev, in Proc. 3rd All-Russian Seminar-Conference on Triggering Effects in Geosystems,Moscow, June 16–19, 2015, Ed. by V. V. Adushkin and G. G. Kochryan (Geos, Moscow, 2015), p. 273 [in Russian].

    Google Scholar 

  27. A. N. Kamshilin, E. N. Volkova, O. R. Kuzichkin, and M. A. Sokolnikov, Ann. Geophys. 47, 93 (2004).

    Google Scholar 

  28. I. Ya. Chebotareva and A. N. Kamshilin, Radiopromyshlennost’, No. 1, 18 (2018).

  29. V. A. Volkov, Colloid Chemistry. Surface Phenomena and Disperse Systems (Lan’, St. Petersburg, Moscow, Krasnodar, 2015) [in Russian].

  30. I. N. Evdokimov, Structural Characteristics of Trade Water–Oil Emulsions (Gubkin Russian State Univ. of Oil and Gas (National Research Univ.), Moscow, 2012) [in Russian].

  31. S. V. Dorovskii, V. N. Dorovskii, and A. M. Blokhin, Geol. Geofiz., No. 11, 1185 (2006).

  32. G. Ya. Shaidurov, D. S. Kudinov, and V. S. Potylitsyn, J. Sib. Fed. Univ., Eng. Technol. 9, 1353 (2016).

    Google Scholar 

  33. G. Ya. Shaidurov, D. S. Kudinov, V. S. Potylitsyn, and R. G. Shaidurov, Russ. Geol. Geophys. 59, 566 (2018).

    Article  ADS  Google Scholar 

  34. L. Z. Bobrovnikov, A. Kh. Degterev, E. F. Shnyukov, and N. A. Maslakov, Geol. Polezn. Iskop. Mirovogo Okeana, No. 4, 72 (2012).

    Google Scholar 

  35. O. A. Potapov, S. A. Lizun, and V. F. Kondrat, Fundamentals of Seismic and Electrical Prospecting (Nedra, Moscow, 1995) [in Russian].

    Google Scholar 

  36. A. S. Safonov, Electrodynamic Prospecting Seismology or Seismic Exploration with the Detection of Electromagnetic Components of the Wave Field (All-Russian Scientific Research Geological Oil Institute, Moscow, 2017) [in Russian].

    Google Scholar 

  37. I. Ya. Chebotareva, Georesources 20, 238 (2018). https://doi.org/10.18599/grs.2018.3.238-245

    Article  Google Scholar 

  38. I. Ya. Chebotareva, Izv., Phys. Solid Earth 54, 201 (2018).

    Article  Google Scholar 

  39. I. Ya. Chebotareva, Acoust. Phys. 57, 857 (2011).

    Article  ADS  Google Scholar 

  40. V. V. Dryagin, O. L. Kuznetsov, A. A. Starodubtsev, and V. E. Rok, Acoust. Phys. 51 (1 suppl.), S54 (2005).

    Article  ADS  Google Scholar 

  41. I. A. Volodin and I. Ya. Chebotareva, Acoust. Phys. 60, 543 (2014).

    Article  ADS  Google Scholar 

  42. I. Ya. Chebotareva, Aktual. Probl. Nefti Gaza 2 (17), 24 (2017). http://oilgasjournal.ru.

Download references

Funding

The article was prepared as part of the state task of the Institute of Petroleum and Gas Problems, Russian Academy of Sciences RAS (topic no. AAAA-A19-119013190038-2) and the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (topic no. 0144-2014-0096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Chebotareva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebotareva, I.Y., Kamshilin, A.N. Features of the Electric Response of Rocks to Vibration under Weak Nonuniform Fluid Saturation Conditions. Acoust. Phys. 66, 55–66 (2020). https://doi.org/10.1134/S1063771020010030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020010030

Keywords:

Navigation