Skip to main content
Log in

Optimization Study on Sliding Wear Characteristics and Heat-Treatment Conditions of Different Grades of Ferritic Ductile Cast Iron

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work reports an experimental investigation on influence of microstructures on dry sliding wear performance of different grades of ferritic ductile iron. Ductile cast iron samples of ferritic grade have been subjected to different heat-treatment processes at different temperatures and times. Taguchi optimization technique (L16) has been applied to evaluate the influence of different process variables (load, time, heat treatment, and grade) during ball-on-plate wear test. Meanwhile, analysis of variance (ANOVA) method was adopted to know the significance of aforesaid process variables. ANOVA results confirmed that the heat-treatment process has highest significance (54.76%) within all process variables. Among heat-treated specimens, austempered samples have outstanding wear resistance while the DMS samples have lower wear resistance. In addition, overall utility values have been evaluated by using individual utility values of weight loss and hardness. An obtained overall utility value gives the optimum combination for achieving higher wear resistance and hardness. Additionally, morphology of wear surfaces was examined in scanning electron microscope and the micrographs confirm the existence of inferior surface in terms of abrasive wear, adhesive wear, particle pullout and delaminated sheets on wear track. Enrichment of oxygen element has been observed on the worn path through energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirms the existence of different compounds like iron and silicon oxides on the wear track surface which may improve its hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Konečná R, Nicoletto G, Bubenko L, and Fintová S, Eng Fract Mech108 (2013) 251.

    Article  Google Scholar 

  2. Dommarco R C, Sousa M E, and Sikora J A, Wear257 (2004) 1185.

    Article  CAS  Google Scholar 

  3. Rashidi A M, and Moshrefi-Torbati M, Mater Lett45 (2000) 203.

    Article  CAS  Google Scholar 

  4. Zhou R, Jiang Y, Lu D, Zhou R, and Li Z, Wear250 (2001) 529.

    Article  Google Scholar 

  5. Zimba J, Simbi D J, and Navara E, Cem Concr Compos25 (2003) 643.

    Article  CAS  Google Scholar 

  6. Magalha L, and Seabra J, Wear215 (1998) 237.

    Article  Google Scholar 

  7. Dommarco R C, and Salvande J D, Wear254 (2003) 230.

    Article  CAS  Google Scholar 

  8. Zhang H, Wu Y, Li Q, and Hong X, Wear406 (2018) 156.

    Article  Google Scholar 

  9. Zhang N, Zhang J, Lu L, Zhang M, Zeng D, and Song Q, Mater Des89 (2016) 815.

    Article  CAS  Google Scholar 

  10. Islam M A, Haseeb A S M A, and Kurny A S W, Wear188 (1995) 61.

    Article  CAS  Google Scholar 

  11. Sahin Y, and Durak O, Mater Des28 (2007) 1844.

    Article  CAS  Google Scholar 

  12. Yang J, and Putatunda S K, Mater Sci Eng A406 (2005) 217.

    Article  Google Scholar 

  13. Mallia J, Grech M, and Smallman R E, Mater Sci Technol14 (1998) 452.

    Article  CAS  Google Scholar 

  14. Górny M, and Tyrała E, J Mater Eng Perform22 (2013) 300.

    Article  Google Scholar 

  15. Kumar P, Barua P B, and Gaindhar J L, Qual Reliab Eng Int16 (2000) 475.

    Article  Google Scholar 

  16. Walia R S, Shan H S, and Kumar P, Mater Manuf Process21 (2006) 907.

    Article  CAS  Google Scholar 

  17. Omran A M, Abdel-Jaber G T, and Ali M M, Int J Eng Res Appl4 (2014) 90.

    Google Scholar 

  18. Gonzaga R A, and Carrasquilla J F, J Mater Process Technol162 (2005) 293.

    Article  Google Scholar 

  19. Bockus S, and Zaldarys G, Mater Sci Medzg16 (2010) 307.

    Google Scholar 

  20. Putatunda S K, and Gadicherla P K, Mater Sci Eng A268 (1999) 15.

    Article  Google Scholar 

  21. Fordyce E P, and Allen C, Wear135 (1990) 265.

    Article  CAS  Google Scholar 

  22. Elsayed A H, Megahed M M, Sadek A A, and Abouelela K M, Mater Des30 (2009) 1866.

    Article  CAS  Google Scholar 

  23. Achary J, J Mater Eng Perform9 (2000) 56.

    Article  CAS  Google Scholar 

  24. Delia M, Alaalam M, and Grech M, Journal of Materials Engineering and Performance7 (1998) 265.

    Article  CAS  Google Scholar 

  25. Erfanian-Naziftoosi H R, Haghdadi N, and Kiani-Rashid A R, J Mater Eng Perform21 (2012) 1785.

    Article  CAS  Google Scholar 

  26. Talebi S H, Ghasemi-Nanesa H, Jahazi M, and Melkonyan H, Metals7 (2017) 346.

    Article  Google Scholar 

  27. Dong H Y, Wu K M, Wang X L, Hou T P, and Yan R, Wear402 (2018) 21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bramaramba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bramaramba, V., Sen, S. Optimization Study on Sliding Wear Characteristics and Heat-Treatment Conditions of Different Grades of Ferritic Ductile Cast Iron. Trans Indian Inst Met 73, 1131–1146 (2020). https://doi.org/10.1007/s12666-020-01947-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01947-3

Keywords

Navigation