Skip to main content
Log in

Numerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This article addresses the heat and mass transport phenomena by performing a theoretical analysis of three-dimensional viscous fluid flow containing gyrotactic micro-organisms over a nonlinear stretched surface. Variable magnetic field is considered normal to the stretched surface to control the fluid flow. Thermal transportation is discussed in view of variable thermal conductivity. Variable characteristics of mass diffusion along with chemical reaction are incorporated in mass transportation. Darcy–Forchheimer expression is used to characterise the porous medium. Also, Brownian motion and thermophoresis are incorporated to enhance the diffusion. The governing partial differential equations (PDEs) are derived using boundary layer analysis by assuming small magnetic Reynolds number. Appropriate transformation is used to convert complex system of coupled PDEs into nonlinear ordinary differential equations (ODEs). Transformed problem is then tackled analytically using optimal homotopic procedure. Reliability of the suggested scheme is presented through error reduction table and also by comparing the obtained solution with the published ones. Graphs and tables are prepared to observe the impact of parameters on physical variables. Dimensionless stresses and rate of heat transfer are computed numerically. It has been observed that larger values of Brownian diffusion and thermophoresis increase the fluid temperature. Moreover, dimensionless stresses and rate of heat transfer are computed to check the reliability of the proposed procedure. These values are clearly in an excellent agreement with the previous findings reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A Q Khan and A Rasheed, Mathematical problems in engineering (2019)

  2. S Mohammed, A Bhattacharjee and S Saha, AIP Conf. Proc.1980, 050029 (2018)

    Article  Google Scholar 

  3. B J Gireesha, A J Chamkha, S Manjunatha and C S Bagewadi, Int. J. Numer. Method H23, 598 (2013)

    Article  Google Scholar 

  4. K Vajravelu, K V Prasad, H Vaidya, N Z Basha and C O Ng, Int. J. Appl. Comput. Math.3, 1619 (2017)

    Article  MathSciNet  Google Scholar 

  5. R Nandkeolyar, M Narayana, S S Motsa and P Sibanda, J. Therm. Sci. Eng. Appl.10, 061005 (2018)

    Article  Google Scholar 

  6. S Bilal, M Sohail, R Naz, M Y Malik and M Alghamdi, Appl. Math. Mech.40, 1 (2019)

    Article  Google Scholar 

  7. K Das, Ain Shams Eng. J.5, 1207 (2014)

    Article  Google Scholar 

  8. S Bilal, M Sohail, R Naz and M Y Malik, Canadian J. Phys.98, 1 (2018)

    ADS  Google Scholar 

  9. S Saleem, M Awais, S Nadeem, N Sandeep and M T Mustafa, Chin. J. Phys.55, 1615 (2017)

    Article  Google Scholar 

  10. J A Khan, M Mustafa, T Hayat and A Alsaedi, Int. J. Heat Mass Transf.86, 158 (2015)

    Article  Google Scholar 

  11. S I Abdelsalam and M M Bhatti, Sci. Rep.9, 1 (2019)

    Article  Google Scholar 

  12. Y Abd Elmaboud, S I Abdelsalam, Kh S Mekheimer and K Vafai, Int. J. Eng. Sci. Technol.22, 237 (2019)

    Google Scholar 

  13. S I Abdelsalam and M M Bhatti, RSC Adv.8, 7904 (2018)

    Article  ADS  Google Scholar 

  14. S I Abdelsalam and K Vafai, Eur. J. Mech. B\(/\)Fluids65, 398 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. S I Abdelsalam and K Vafai, Math. Biosci.283, 91 (2017)

    Article  MathSciNet  Google Scholar 

  16. S I Abdelsalam, M M Bhatti, A Zeeshan, A Riaz and O A Bég, Phys. Scr. https://doi.org/10.1088/1402-4896/ab207a (2019) (in press)

  17. S Sharidan, M Mahmood and I Pop, Appl. Mech. Eng.11, 647 (2006)

    Google Scholar 

  18. J Alinejad and S Samarbakhsh, J. Appl. Math.2012, 1 (2012)

    Article  Google Scholar 

  19. I Swain, S R Mishra and H B Pattanayak, J. Eng.2015, 1 (2015)

    Article  Google Scholar 

  20. M Hamid, M Usman, Z H Khan, R Ul Haq and W Wang, Eur. Phys. J. Plus133, 527 (2018)

    Article  Google Scholar 

  21. M Hamid, T Zubair, M Usman, Z H Khan and W Wang, J. Comput. Design Eng.6, 584 (2019)

    Article  Google Scholar 

  22. M Nawaz, U Arif and I H Qureshi, Phys. Scr.94, 115206 (2019)

    Article  ADS  Google Scholar 

  23. I H Qureshi, M Nawaz, S Rana and T Zubair, Commun. Theor. Phys.70, 049 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. A J Chamkha, Int. Commun. Heat Mass Transf.30, 413 (2003)

    Article  Google Scholar 

  25. N Sandeep, B R Kumar and M S J Kumar, J. Mol. Liquids212, 585 (2015)

    Article  Google Scholar 

  26. Z Shah, E O Alzahrani, A Dawar, A Ullah and I Khan, Int. Commun. Heat Mass Transf.110, 104385 (2020)

    Article  Google Scholar 

  27. Z Shah, A Khan, W Khan, M K Alam, S Islam, P Kumam and P Thounthongi, Comput. Meth. Prog. Biomed. (2019), https://doi.org/10.1016/j.cmpb.2019.105197.

  28. Z Shah, M Sheikholeslami, P Kumam, M Shutaywi and P Thounthong, https://doi.org/10.1109/ACCESS.2019.2955775, IEEE Access.

  29. Z Shah, P Kumam, A Dawar, E O Alzahrani and Phatiphat Thounthong, Front. Phys.https://doi.org/10.3389/fphy.2019.00171

  30. M Jawad, Z Shah, S Islam, E Bonyah and A Khan, J. Phys. Commun.2, 115014 (2018)

    Article  Google Scholar 

  31. A A Farooq, Z Shah and E O Alzahrani, Symmetry11, 1 (2019)

    Google Scholar 

  32. A R Seadawy and K El-Rashidy, Pramana – J. Phys.87: 20 (2016)

    Google Scholar 

  33. S Iram, M Nawaz and A Ali, Pramana – J. Phys.91: 47 (2018)

    Article  ADS  Google Scholar 

  34. W A Khan, A S Alshomrani, A K Alzahrani, M Khan and M Irfan, Pramana – J. Phys.91: 63 (2018)

    Article  ADS  Google Scholar 

  35. Z Palwasha, N S Khan, Z Shah, S Islam and E Bonyah, AIP Adv.8, 105318 (2018)

    Article  ADS  Google Scholar 

  36. N S Khan, S Zuhra, Z Shah, E Bonyah, W Khan and S Islam, AIP Adv.8, 115302 (2018), https://doi.org/10.1063/1.5055690

    Article  ADS  Google Scholar 

  37. S Nasir, Z Shah, S Islam, W Khan, E Bonyah, M Ayaz and A Khan, AIP Adv.9, 035031 (2019), https://doi.org/10.1063/1.5087468

    Article  ADS  Google Scholar 

  38. A V Kuznetsov, Nanoscale Res. Lett.6, 100 (2011)

    Article  ADS  Google Scholar 

  39. M Usman, M Hamid and M M Rashidi, Neural Comput. Appl.31, 1 (2018)

    Google Scholar 

  40. S Zuhra, N S Khan, Z Shah, S Islam and E Bonyah, AIP Adv.8, 105210 (2018)

    Article  ADS  Google Scholar 

  41. W A Khan, A M Rashad, M M M Abdou and I Tlili, Eur. J. Mech. B\(/\)Fluids75, 133 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  42. D Lu, M Ramzan, N Ullah, J D Chung and U Farooq, Sci. Rep.7, 17008 (2017)

    Article  ADS  Google Scholar 

  43. M Sohail, R Naz, Z Shah, P Kumam and P Thounthong, AIP Adv.9, 125016 (2019), https://doi.org/10.1063/1.5118929

    Article  ADS  Google Scholar 

  44. R Sivaraj, I L Animasaun, A S Olabiyi, S Saleem and N Sandeep, Multidiscip. Model. Mater. Struct.14, 695 (2018)

    Article  Google Scholar 

  45. S Siddiqa, N Begum, S Saleem, M A Hossain and R S R Gorla, Int. J. Heat Mass Transf.101, 608 (2016)

    Article  Google Scholar 

  46. A Zaib, M M Rashidi and A J Chamkha, J. Porous Media21, 911 (2018)

    Article  Google Scholar 

  47. M Sohail, R Naz and S I Abdelsalam, Physica A 537, 122753 (2020)

    Article  MathSciNet  Google Scholar 

  48. S Bilal, M Sohail and R Naz, Multidiscip. Model. Mater. Struct.15, 1170 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been accomplished under a bilateral cooperation agreement between TWAS-UNESCO and Universidad Nacional Autónoma de México in Juriquilla, Querétaro. Sara I. Abdelsalam would like to acknowledge TWAS-Italy for the financial support of her visit to UNAM under the TWAS-UNESCO Associateship. The author also thanks the FORDECYT-CONACYT for financial support under the aforementioned agreement. Special thanks are given to Prof. Marcelo Aguilar and Prof. Jorge X Velasco at the Instituto de Matemáticas of UNAM for their support and for facilitating the visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara I Abdelsalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsalam, S.I., Sohail, M. Numerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms. Pramana - J Phys 94, 67 (2020). https://doi.org/10.1007/s12043-020-1933-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1933-x

Keywords

PACS Nos

Navigation