Skip to main content
Log in

Long-lived quantum coherence in a two-level semiconductor quantum dot

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we present an analytical solution for the system of two-level semiconductor quantum dot. In addition, we discuss the rates of the photon radiative and phonon radiationless transitions from the excited state \( (\alpha _{12}, \alpha _{21}),\) the rate of processes of pure dephasing \( (\gamma )\), the detuning parameter (\(\Delta \)) and the Rabi frequency (\(\Omega \)), on the atomic occupation probabilities (\(\rho _{11}(t)\) and \(\rho _{22}(t)),\) the atomic population inversion (\(\rho _{z}(t)),\) the purity (\(P_{A}(t)),\) the von Neumann entropy (S(t)) and the information entropies (\(H(\sigma _{x}),\) \(H(\sigma _{y})\) and \(H(\sigma _{z}))\). We clearly observe the emergence of long-lived quantum coherence phenomenon in all the curves for some special cases of \(\alpha _{12},\) \(\alpha _{21}\), \(\gamma \), \(\Delta \) and \( \Omega .\) Besides, the decay phenomenon is quite evident in the purity curves, which can be simply controlled by changing the values of \(\alpha _{12},\) \( \alpha _{21}\) and \(\gamma .\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J B Johnson, Phys. Rev. 32, 97 (1928)

    ADS  Google Scholar 

  2. M Mogi, M Kawamura, R Yoshimi, A Tsukazaki, Y Kozuka, N Shirakawa, K S Takahashi, M Kawasaki and Y Tokura, Nature Mater. 16, 516 (2017)

    ADS  Google Scholar 

  3. B G Yacobi, Semiconductor materials: An introduction to basic principles (Springer, New York, 2003)

    Google Scholar 

  4. A A Balandin and K L Wang, Handbook of semiconductor nanostructures and nanodevices (American Scientific Publishers, 2006), a set of 5 volumes

  5. J Turley, The essential guide to semiconductors (Prentice Hall, PTR, Upper Saddle River, 2002)

    Google Scholar 

  6. Y Peter and C Manuel, Fundamentals of semiconductors: Physics and materials properties (Springer, New York, 2004)

    MATH  Google Scholar 

  7. S Adachi, The handbook on optical constants of semiconductors: In tables and figures (World Scientific Publishing, Singapore, 2012)

    Google Scholar 

  8. R F Cregan, B J Mangan, J C Knight, T A Birks, P St J Russell, P J Roberts and D C Allan, Science 285, 1537 (1999)

    Google Scholar 

  9. V Srikant and D R Clarke, J. Appl. Phys. 83, 5447 (1998)

    ADS  Google Scholar 

  10. K Zhang, K Deng, J Li, H Zhang, W Yao, J Denlinger, Y Wu, W Duan and S Zhou, Phys. Rev. Mater. 2, 054603 (2018)

    Google Scholar 

  11. J Gao, K Kempa, M Giersig, E M Akinoglu, B Han and R Li, Adv. Phys. 65, 553 (2016)

    ADS  Google Scholar 

  12. Y Volpez, D Loss and J Klinovaja, Phys. Rev. B 96, 085422 (2017)

    ADS  Google Scholar 

  13. W A Benalcazar, B A Bernevig and T L Hughes, Science 357, 61 (2017)

    ADS  Google Scholar 

  14. S M Sze and K K Ng, Physics of semiconductor devices, 3rd Edn (John Wiley and Sons, New York, 2006)

    Google Scholar 

  15. C Kittel, Introduction to solid state physics, 7th Edn (Wiley, New York, 1995)

    MATH  Google Scholar 

  16. L E Brus, J. Phys. Chem. Solids 59, 459 (1998)

    ADS  Google Scholar 

  17. J W Allen, Nature 187, 403 (1960)

    ADS  Google Scholar 

  18. R Stoklas, D Greguŝovl, M Blaho, K Frhlich, J Novlk, M Matys, Z Yatabe, P Kordoš and T Hashizume, Semicond. Sci. Technol. 32, 045018 (2017)

    ADS  Google Scholar 

  19. T J Dhilip Kumar, P Tarakeshwar and N Balakrishnan, J. Chem. Phys. 128, 194714 (2008)

    ADS  Google Scholar 

  20. S Adachi, GaAs and related materials: Bulk semiconducting and superlattice properties (World Scientific, Singapore, 1994)

    Google Scholar 

  21. J Orton, The story of semiconductors (Oxford University Press, Oxford, 2004).

    MATH  Google Scholar 

  22. G Busch, Eur. J. Phys. 10, 254 (1989)

    Google Scholar 

  23. P R Morris, A history of the world semiconductor industry (IET, 1990)

  24. F Braun, Planar microwave engineering: A practical guide to theory, measurement, and circuits (Cambridge University Press, 2004)

    Google Scholar 

  25. Z Li, M Khaled Husain, H Yoshimoto, K Tani, Y Sasago, D Hisamoto, J D Fletcher, M Kataoka, Y Tsuchiya and S Saito, Semicond. Sci. Technol. 32, 075001 (2017)

    ADS  Google Scholar 

  26. W Shockley, Electrons and holes in semiconductors: With applications to transistor electronics (R. E. Krieger Pub., Melbourne, 1950)

    MATH  Google Scholar 

  27. C H Sterling, Military communications: From ancient times to the 21st century (ABC-CLIO, Inc., California, 2008)

  28. S Gangasani, Eng. Technol. 5, 8128 (2007)

    Google Scholar 

  29. A Zora, C Simserides and G P Triberis, J. Phys.: Condens. Matter 19, 406201 (2007)

    Google Scholar 

  30. C D Simserides, U Hohenester, G Goldoni and E Molinari, Phys. Status Solidi B 224, 745 (2001)

    ADS  Google Scholar 

  31. C D Simserides, U Hohenester, G Goldoni and E Molinari, Mater. Sci. Eng. B 80, 266 (2001)

    Google Scholar 

  32. A Hartmann, Y Ducommun, E Kapon, U Hohenester, C Simserides and E Molinari, Phys. Status Solidi A 178, 283 (2000)

    ADS  Google Scholar 

  33. C Simserides, U Hohenester, G Goldoni and E Molinari, Local optical absorption by confined excitons in single and coupled quantum dots (Springer, Berlin, 2001)

    Google Scholar 

  34. G B Abdullayev, T D Dzhafarov and S Torstveit (Translator), Atomic diffusion in semiconductor structures (Gordon & Breach Science Pub., 1987)

  35. M Cutler and N F Mott, Phys. Rev. 181, 1336 (1969)

    ADS  Google Scholar 

  36. I V Martynenko, A P Litvin, F Purcell-Milton, A V Baranov, A V Fedorov and Y K Gun’ko, Appl. Mater. Chem. B 5, 6701 (2017)

    Google Scholar 

  37. M Sabaeian and A Khaledi-Nasab, Appl. Opt. 51, 4176 (2012)

    ADS  Google Scholar 

  38. G A M Safar, W N Rodrigues, L A Cury, H Chacham, M V B Moreira, S L S Freire and A G de Oliveira, Appl. Phys. Lett. 71, 521 (1997)

    ADS  Google Scholar 

  39. D Leonard, S Fafard, K Pond, Y H Zhang, J L Merz and P M Petroff, J. Vac. Sci. Technol. B 12, 2516 (1994)

    Google Scholar 

  40. Mei-Ying Kong, Xiao-Liang Wang, Dong Pan and Yi-Ping Zeng, J. Appl. Phys. 86, 1456 (1999)

    ADS  Google Scholar 

  41. R C Ashoori, Nature 379, 413 (1996)

    ADS  Google Scholar 

  42. M A Kastner, Phys. Today 46, 24 (1993)

    ADS  Google Scholar 

  43. C D Simserides, U Hohenester, G Goldoni and E Molinari, Phys. Rev. B 62, 13657 (2000)

    ADS  Google Scholar 

  44. A Khaledi-Nasab, M Sabaeian, M Sahrai and V Fallahi, J. Opt.  16, 55517 (2014)

    Google Scholar 

  45. H Y Ramerez, J Flrez and A S Camacho, Phys. Chem. 17, 23938 (2015)

    Google Scholar 

  46. D Pan, Y P Zeng, J Wu, H M Wang, C H Chang, J M Li and M Y Kong, Appl. Phys. Lett. 70, 2440 (1997)

    ADS  Google Scholar 

  47. D Pan, Y P Zeng, M Y Kong, J Wu, Y Q Zhu, C H Zhang, J M Li and C Y Wang, Electron. Lett. 32, 1726 (1996)

    ADS  Google Scholar 

  48. J L Liu, W G Wu, A Balandin, G L Jin and K L Wang, Appl. Phys. Lett. 74, 185 (1999)

    ADS  Google Scholar 

  49. J Phillips, K Kamath and P Bhattacharya, Appl. Phys. Lett. 72, 2020 (1998)

    ADS  Google Scholar 

  50. A Zora, C Simserides and G Triberis, Phys. Status Solidi A 202, 619 (2005)

    ADS  Google Scholar 

  51. A Zora, C Simserides and G P Triberis, J. Phys.: Conf. Ser. 245, 012037 (2010)

    Google Scholar 

  52. C Simserides, A Zora and G Triberis, Int. J. Mod. Phys. B 21, 1649 (2007)

    ADS  Google Scholar 

  53. A Zora, C Simserides and G Triberis, AIP Conf. Proc. 893, 893 (2007)

    ADS  Google Scholar 

  54. A Zora, C Simserides and G Triberis, Int. J. Mod. Phys. B 18, 3717 (2004)

    ADS  Google Scholar 

  55. T Krnhenmann, L Ciorciaro, C Reichl, W Wegscheider, L Glazman, T Ihn and K Ensslin, New J. Phys. 19, 023009 (2017)

    ADS  Google Scholar 

  56. A Hofmann, V F Maisi, J Basset, C Reichl, W Wegscheider, T Ihn, K Ensslin and C Jarzynski, Phys. Status Solidi B 254, 1600546 (2017)

    ADS  Google Scholar 

  57. A Stockklauser, P Scarlino, J V Koski, S Gasparinetti, C K Andersen, C Reichl, W Wegscheider, T Ihn, K Ensslin and A Wallraff, Phys. Rev. 7, 011030 (2017)

    Google Scholar 

  58. A Hofmann, V F Maisi, T Krnhenmann, C Reichl, W Wegscheider, K Ensslin and T Ihn, Phys. Rev. Lett. 119, 176807 (2017)

    ADS  Google Scholar 

  59. S Xu, A L Dadlani, S Acharya, P Schindler and F B Prinz, Appl. Surface Sci. 367, 500 (2016)

    ADS  Google Scholar 

  60. I A Gorbachev, I Yu Goryacheva and E G Glukhovskoy, Bionanoscience 6, 153 (2016)

    Google Scholar 

  61. M Achermann, M A Petruska, S A Crooker and V I Klimov, J. Phys. Chem. B 107, 13782 (2003)

    Google Scholar 

  62. S Coe-Sullivan, J S Steckel, W-K Woo, M G Bawendi and V Bulović, Adv. Funct. Mater. 15, 1117 (2005)

    Google Scholar 

  63. R van den Berg, G P Brandino, O El Araby, R M Konik, V Gritsev and J-S Caux, Phys. Rev. B 90, 155117 (2014)

    ADS  Google Scholar 

  64. A J Nozik, Annu. Rev. Phys. Chem. 52, 193 (2001)

    ADS  Google Scholar 

  65. K Chang and Jian-Bai Xia, Phys. Rev. B 57, 9780 (1998)

    ADS  Google Scholar 

  66. C Chang-Hasnain and S Lien Chuan, J. Lightw. Technol.24, 4642 (2007)

    ADS  Google Scholar 

  67. D A M Abo-Kahla, Appl. Math. Inform. Sci. 10, 1 (2016)

    Google Scholar 

  68. D A M Abo-Kahla, M Abdel-Aty and A Farouk, Int. J. Theor. Phys. 57, 2319 (2018)

    Google Scholar 

  69. G Ye, C Pan, X Huang, Z Zhao and J He, Int. J. Bifurc. Chaos 28, 1850010 (2018)

    Google Scholar 

  70. I S Gomez, M Losada and O Lombardi, Entropy 19, 205 (2017)

    ADS  Google Scholar 

  71. D A M Abo-Kahla and M Abdel-Aty, Int. J. Quantum Inform. 13, 1550042 (2015)

    ADS  Google Scholar 

  72. D A M Abo-Kahla, Nonlinear Dyn. 94, 1689 (2018)

    Google Scholar 

  73. A Löffler, A Forchel, P Michler, S M Ulrich, S Ates and S Reitzenstein, Phys. Rev. Lett. 106, 247402 (2011)

    ADS  Google Scholar 

  74. A Ulhaq, S Weiler, C Roy, S M Ulrich, M Jetter, S Hughes and P Michler, Opt. Express 21, 4382 (2013)

    ADS  Google Scholar 

  75. P S Dara, Phys. Rev. Lett. 110, 217401 (2013)

    Google Scholar 

  76. K Fujii, J. Mod. Phys. 08(12), 2042 (2017)

    Google Scholar 

  77. B Thimmel, P Nalbach and O Terzidis, Eur. Phys. J. B 9, 207 (1999)

    ADS  Google Scholar 

  78. L W Casperson, Phys. Rev. A 46(1), 401 (1992)

    ADS  Google Scholar 

  79. C Majenz, T Albash, H P Breuer and D A Lidar, Phys. Rev. A 88(1), 012103 (2013)

    ADS  Google Scholar 

  80. O Marlan Scully and M Suhail Zubairy, Quantum optics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  81. V Farra and I Ps̃enc̃ík, J. Acoust. Soc. Am. 114(3), 1366 (2003)

  82. G Panitchayangkoon, D Hayes, K A Fransted, J R Caram, E Harel, J Wen, R E Blankenship and G S Engel, Proc. Natl Acad. Sci. USA 107(29), 12766 (2010)

    ADS  Google Scholar 

  83. M Xin, W S Leong, Z Chen and S-Y Lan, Phys. Rev. Lett. 122, 163901 (2019)

    ADS  Google Scholar 

  84. S Koyu and T V Tscherbul, Phys. Rev. A 98, 023811 (2018)

    ADS  Google Scholar 

  85. H-G Duan, V I Prokhorenko, R J Cogdell, K Ashraf, A L Stevens, E Wientjes, R Croce, M Thorwart and R J D Miller, EPJ Web of Conferences 205, 09035 (2019)

    Google Scholar 

  86. C E Shannon, Bell System Tech. J. 27, 379 (1948)

    MathSciNet  Google Scholar 

  87. A Rényi, On Measures of Information and Entropy, in: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1960) pp. 547–561

  88. O Rioul and J C Magossi, Entropy 16(9), 4892 (2014)

    ADS  MathSciNet  Google Scholar 

  89. R W Hamming, Bell System Tech. J. 29(2), 147 (1950)

    MathSciNet  Google Scholar 

  90. T M El-Shahat, S Abdel-Khalek, M Abdel-Aty and A-S F Obada, Chaos Solitons Fractals 18, 289 (2003)

    ADS  Google Scholar 

  91. M F Fang, P Zhou and S Swain, J. Mod. Opt. 47(6), 1043 (2000)

    ADS  Google Scholar 

  92. A D Cronin, J Schmiedmayer and D E Pritchard, Rev. Mod. Phys. 81, 1051 (2009)

    ADS  Google Scholar 

  93. H J Kimble, Nature 453, 1023 (2008)

    ADS  Google Scholar 

  94. K Hammerer, A S Srensen and E S Polzik, Rev. Mod. Phys. 82, 1041 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

The author thanks the editor and the reviewer for giving him the chance to revise and improve this paper. The author deeply appreciates the profound comments and the constructive ideas of the reviewer which add a lot to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A M Abo-Kahla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Kahla, D.A.M. Long-lived quantum coherence in a two-level semiconductor quantum dot. Pramana - J Phys 94, 65 (2020). https://doi.org/10.1007/s12043-020-1932-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1932-y

Keywords

PACS Nos

Navigation