Skip to main content
Log in

Coexisting chaotic attractors in a memristive system and their amplitude control

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A memristive chaotic system of rotational symmetry is constructed and analysed. The dynamical behaviour of the system is demonstrated by phase trajectories, Lyapunov exponents and bifurcation diagrams. Coexisting attractors are observed and a simple approach for amplitude control is proposed according to the specific structure. It shows that this symmetric memristive system has partial amplitude control when a control function is introduced. The corresponding circuit implementation is given by generating a symmetric pair of chaotic attractors. Circuit results agree well with the theoretical analysis and numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D B Strukov et al, Nature 453(7191), 80 (2008)

    Article  ADS  Google Scholar 

  2. B C Bao et al, Acta Phys. Sinica 60(12), 63 (2011)

    Google Scholar 

  3. G Y Wang, C L Wang, W Chen and D Tan, J. Circuits Systems 16(06), 114 (2011)

    Google Scholar 

  4. X Xia, Y C Zeng and Z Li, Pramana – J. Phys.91: 82 (2018)

    Article  ADS  Google Scholar 

  5. X L Cai and Y L Cheng, Computer Era 05, 21 (2016)

    Google Scholar 

  6. L Zhou, C H Wang and L L Zhou, Int. J. Circ. Theor. 46, 84 (2018)

    Article  Google Scholar 

  7. B C Lai and J J He, Pramana – J. Phys. 90: 33 (2018)

    Article  ADS  Google Scholar 

  8. M Borah and B K Roy, Indian Control Conference (ICC) (2017) p. 450

  9. S Jafari, V T Pham and T Kapitaniak, Int. J. Bifurc. Chaos26(02), 1650031 (2016)

    Article  Google Scholar 

  10. X Y Dang, C B Li, B C Bao and H G Wu, Chin. Phys. B 24(05), 274 (2015)

    Google Scholar 

  11. H Bao et al, Acta Phys. Sinica 65(18), 219 (2016)

    Google Scholar 

  12. H R Abdolmohammadi, A J M Khalaf, S Panahi and Sajad Jafari, Pramana – J. Phys. 90: 70 (2018)

    Article  ADS  Google Scholar 

  13. S Jafari et al, Nonlinear Dynam. 86(2), 1349 (2016)

    Article  Google Scholar 

  14. A N Pisarchik and U Feudel, Phys. Rep. 540(4), 167 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. R L Mogue Tagne, J Kengne and A Nguomkam Negou, Int. J. Dynam. Controls 7(2), 476 (2019)

    Article  Google Scholar 

  16. N Wang, G Zhang and H Bao, Nonlinear Dynam. 4, 1477 (2019)

  17. C B Li, J C Sprott and H Y Xing, Nonlinear Dynam. 87(2), 1531 (2017)

    MathSciNet  Google Scholar 

  18. G D Leutcho and J Kengne, Chaos Solitons Fractals 113, 275 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. G Gugapriya et al, Pramana – J. Phys. 92: 48 (2019)

    Article  ADS  Google Scholar 

  20. P F C Tilles, H A Cerdeira and F F Ferreira, ChaosSolitons Fractals 49, 32 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. C B Li and J C Sprott, Nonlinear Dynam. 73(3), 1335 (2013)

    Article  MathSciNet  Google Scholar 

  22. C L Li, S M Yu and X S Luo, Acta Phys. Sinica 61(11), 127 (2012)

    Article  Google Scholar 

  23. C H Miwadinou et al, Chaos Solitons Fractals 113, 89 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. C B Li et al, Chin. Phys. B 26(12), 133 (2017)

    Google Scholar 

  25. Z Galias, IEEE Trans. Circuits Syst. II 65(5), 637 (2018)

    Article  Google Scholar 

  26. A Bayani et al, Phys. Lett. A 383(13), 1450 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. C B Li and J C Sprott, Nonlinear Dynam. 78(3), 2059 (2014)

    Article  MathSciNet  Google Scholar 

  28. M E Sahin et al, Sensor Actuat. A: Phys. 290, 107 (2019)

    Article  Google Scholar 

  29. A Rahman et al, Inventions 4(2), 30 (2019)

    Article  Google Scholar 

  30. X Shi et al, Neurocomputing 166, 487 (2015)

    Article  Google Scholar 

  31. V T Pham, S Vaidyanathan, C Volos, E Tlelo-Cuautle and F R Tahir, Stud. Comput. Intell. 81 (2017)

  32. J Yang et al, Neurocomputing 227, 142 (2017)

    Article  Google Scholar 

  33. S Vaidyanathan et al, Automation Control 13(6), 644 (2019)

    Article  Google Scholar 

  34. G Tigan, Proceedings of MENP-3 (2004) p. 265

  35. Z Wang, Nonlinear Dynam. 60(3), 369 (2010)

    Article  MathSciNet  Google Scholar 

  36. C Yong and Z Y Yan, Commun. Theor. Phys. 49(04), 951 (2008)

    Article  ADS  Google Scholar 

  37. G Tigan and D Constantinescu, Chaos Solitons Fractals 42(1), 20 (2008)

    Article  ADS  Google Scholar 

  38. V Sundarapandian and R Karthikeyan, Eng. Sci. Technol. 3(5), 263 (2011)

    Google Scholar 

  39. X J Liu, L Hong and L X Yang, Nonlinear Dynam. 75(3), 589 (2014)

    Article  MathSciNet  Google Scholar 

  40. R Y Zhang, Nonlinear Dynam. 72(3), 629 (2013)

    Article  MathSciNet  Google Scholar 

  41. S Jafari and J C Sprott, Chaos Solitons Fractals 57(4), 79 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Grant No. 61871230), the Natural Science Foundation of Jiangsu Province (Grant No. BK20181410) and the Natural Science Foundation of Shandong Province (Grant No. ZR2017PA008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbiao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, H., Gu, Z., Lei, T. et al. Coexisting chaotic attractors in a memristive system and their amplitude control. Pramana - J Phys 94, 62 (2020). https://doi.org/10.1007/s12043-020-1937-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1937-6

Keywords

PACS Nos

Navigation