Skip to main content
Log in

MHD mixed convection flow of a nanofluid past a stretching surface of variable thickness and vanishing nanoparticle flux

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This article aims to present the flow and heat transfer characteristics of a nanofluid past an elastic sheet having variable thickness in the presence of a magnetic field. Vanishing nanoparticle flux at the boundary has been taken into account for the passive control of nanoparticles. Two-phase model for the nanofluid has been considered. With the help of similarity transformations, the governing nonlinear partial differential equations are converted into nonlinear ordinary differential equations along with the appropriate boundary conditions. The reduced equations are then solved numerically. The effects of buoyancy parameter, magnetic parameter, Brownian motion, thermophoresis parameter etc. on velocity, temperature and nanoparticle volume fraction are presented graphically and analysed in detail. Velocity, temperature and nanoparticle volume fraction are decreasing functions of wall thickness parameter for decelerated flow. Due to increasing values of thermophoresis parameter, the rate of heat transfer at the surface reduces while with the increase in the Brownian motion parameter the mass transfer rate at the surface increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S U S Choi, ASME, FED 231\(/\)MD, USA 66, 99 (1995)

  2. Y Xuan and Q Li, Int. J. Heat Fluid Flow21, 58 (2000)

    Article  Google Scholar 

  3. J Buongiorno, ASME J. Heat Transfer128, 240 (2006)

    Article  Google Scholar 

  4. A V Kuznetsov and D A Nield, Int. J. Therm. Sci.49(2), 243 (2010)

    Article  Google Scholar 

  5. W A Khan and I Pop, Int. J. Heat Mass Transfer53, 2477 (2010)

    Article  Google Scholar 

  6. W A Khan and A Aziz, Int. J. Therm. Sci.50, 1207 (2011)

    Article  Google Scholar 

  7. P Rana and R Bhargava, Commun. Nonlinear Sci. Numer. Simul.17, 212 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. M Sheikholeslami, B Rezaeianjouybari, M Darzi, A Shafee, Z Li and T K Nguyen, Int. J. Heat Mass Transfer141, 974 (2019)

    Article  Google Scholar 

  9. M Sheikholeslami, M Jafaryar, A Shafee, Z Li and R ul Haq, Int. J. Heat Mass Transfer136, 1233 (2019)

    Article  Google Scholar 

  10. M Sheikholeslami, Comput. Meth. Appl. Mech. Eng.344, 319 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. M Sheikholeslami and O Mahian, J. Clean. Prod.215, 963 (2019)

    Article  Google Scholar 

  12. M Sheikholeslami, M Jafaryar, M Hedayat, A Shafee, Z Li, T K Nguyen and M Bakouri, Int. J. Heat Mass Transfer137, 1290 (2019)

    Article  Google Scholar 

  13. M Sheikholeslami, A Arabkoohsar, I Khan, A Shafee and Z Li, J. Clean. Prod.221, 885 (2019)

    Article  Google Scholar 

  14. S Ghosh and S Mukhopadhyay, Pramana – J. Phys. 92: 93 (2019)

    Article  ADS  Google Scholar 

  15. Y Yirga and B Shankar, Int. J. Comput. Meth. Eng. Sci. Mech.16, 275 (2015)

    Article  Google Scholar 

  16. M Usman, M Hamid, U Khan, S T M Din, M A Iqbal and W Wang, Alex. Eng. J. (2017) https://doi.org/10.1016/j.aej.2017.03.052

    Article  Google Scholar 

  17. T Fang, Ji Zhang and Y Zhong, Appl. Math. Comput.218, 7241 (2012)

    MathSciNet  Google Scholar 

  18. T Hayat, I Ullah, A Alsaedi and M Farooq, Results Phys.7, 189 (2017)

    Article  ADS  Google Scholar 

  19. S V Subhashini, R Sumathi and I Pop, Int. Commun. Heat Mass Transfer48, 61 (2013)

    Article  Google Scholar 

  20. E M A Elbashbeshy, T G Emam and M S Abdel-Wahed, Can. J. Phys.91, 699 (2013)

    Google Scholar 

  21. M M Khader and A M Megahed, Eur. Phys. J. Plus128, 100 (2013)

    Article  Google Scholar 

  22. M M Khader and A M Megahed, J. Appl. Mech. Tech. Phys.56(2), 241 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. T Hayat, M Farooq, A Alsaedi and F Al-Solamy, AIP Adv.5, 087159 (2015)

    Article  ADS  Google Scholar 

  24. M S Abdel-Wahed, E M A Elbashbeshy and T G Emam, Appl. Math. Comput. 254, 49 (2015)

    MathSciNet  Google Scholar 

  25. K V Prasad, K Vajravelu and H Vaidya, Int. J. Comput. Meth. Eng. Sci. Mech.17(4), 288 (2016)

    Article  Google Scholar 

  26. K Vajravelu, K V Prasad, Chiu-On Ng and H Vaidya, Int. J. Appl. Comput. Math. (2016), https://doi.org/10.1007/s40819-016-0291-3

  27. K V Prasad, H Vaidya and K Vajravelu, J. Mech. (2016), https://doi.org/10.1017/jmech.2016.101

  28. T Hayat, M Zubair, M Ayub, M Waqas and A Alsaedi, Eur. Phys. J. Plus131, 355 (2016)

    Article  Google Scholar 

  29. K V Prasad, K Vajravelu, H Vaidya and R A Van Gorder, Results Phys.7, 1462 (2017)

    Article  ADS  Google Scholar 

  30. K Vajravelu, J. Math. Anal. Appl.188, 1002 (1994)

    Article  Google Scholar 

  31. K Vajravelu and A Hadjinicolaou, Int. J. Eng. Sci.35, 1237 (1997)

    Article  Google Scholar 

  32. O D Makinde and A Aziz, Int. J. Therm. Sci.49, 1813 (2010)

    Article  Google Scholar 

  33. H A Nabwey, M Boumazgour and A M Rashad, Indian J. Phys. (2017), https://doi.org/10.1007/s12648-017-0978-2

  34. M Waqas, A Alsaedi, S A Shehzad, T Hayat and S Asghar, J. Braz. Soc. Mech. Sci. Eng. (2017), https://doi.org/10.1007/s40430-017-0743-7

    Article  Google Scholar 

  35. K Vajravelu, K V Prasad, P S Datti and B T Raju, J. King Saud University – Eng. Sci.29, 57 (2017)

  36. T Hayat, K Muhammad, M Farooq and A Alsaedi, AIP Adv.6, 015214 (2016)

    Article  ADS  Google Scholar 

  37. H I Andersson, Acta Mech.158, 121 (2002)

    Article  Google Scholar 

  38. H I Andersson, K H Bech and B S Dandapat, Int. J. Non-Linear Mech. 27, 929 (1992)

    Article  Google Scholar 

  39. K L Hsiao, Commun. Nonlinear Sci. Numer. Simul.15, 1803 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the editor and reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Mukhopadhyay, S. MHD mixed convection flow of a nanofluid past a stretching surface of variable thickness and vanishing nanoparticle flux. Pramana - J Phys 94, 61 (2020). https://doi.org/10.1007/s12043-020-1924-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1924-y

Keywords

PACS Nos

Navigation