Skip to main content
Log in

Shell model description of the core excited level structure of \(^{89}\)Sr nucleus and systematic features of the \(N=51\) odd-A isotones

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Shell-model calculations are performed using NuShellX code in the model space \(\pi \)(\(f_{5/2}\), \(p_{3/2}\), \(p_{1/2}\), \(g_{9/2}\)) \(\otimes \) \(\nu \)(\(g_{9/2}\), \(g_{7/2}\), \(d_{5/2}\), \(h_{11/2}\)), which probe the proton core excitation from the interior of \(Z=38\) semiclosed shell and neutron core excitation from the interior of \(N=56\) semiclosed shell for the level structure of \(^{89}\)Sr. Our calculations show that the excitation of a single \(d_{5/2}\) neutron across \(N=56\) semiclosed shell into the \(h_{11/2}\) orbit should have great effects on the excited states of \(^{89}\)Sr. In addition, the systematic features of proton core excitation across \(Z=38\) semiclosed shell into the \(g_{9/2}\) orbit and neutron core excitation across \(N=56\) semiclosed shell into the \(g_{7/2}\), \(s_{1/2}\), \(d_{3/2}\), \(h_{11/2}\) orbits in \(N=51\) isotones are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D P Ahalpara and K H Bhatt, Pramana – J. Phys. 6, 222 (1976)

    Article  ADS  Google Scholar 

  2. R Sahu and V K B Kota, Pramana – J. Phys. 82, 757 (2014)

    Article  ADS  Google Scholar 

  3. Monica Karday et al, Pramana – J. Phys. 91: 70 (2018)

    Article  ADS  Google Scholar 

  4. Han-Kui Wang et al, Phys. Rev. C 96, 054313 (2017)

    Article  ADS  Google Scholar 

  5. Yue Shi, Phys. Rev. C 95, 034307 (2017)

    Article  ADS  Google Scholar 

  6. L Olivier et al, Phys. Rev. L 119, 192501 (2017)

    Article  ADS  Google Scholar 

  7. Y H Wu et al, Chin. Phys. Lett. 31, 042101 (2014)

    Article  ADS  Google Scholar 

  8. F Flavigny et al, Phys. Rev. L 118, 242502 (2017)

    Article  ADS  Google Scholar 

  9. D Steppenbeck et al, Phys. Rev. C 96, 064310 (2017)

    Article  ADS  Google Scholar 

  10. Z Q Li et al, Phys. Rev. C 94(3), 014315 (2016)

    Article  ADS  Google Scholar 

  11. E A Stefanova et al, Phys. Rev. C 62, 054314 (2001)

    Article  ADS  Google Scholar 

  12. A Chakraborty et al, Phys. Rev. C 72, 054309 (2005)

    Article  ADS  Google Scholar 

  13. P W Luo et al, Phys. Rev. C 89, 034318 (2014)

    Article  ADS  Google Scholar 

  14. S E Arnell et al, Phys. Rev. C 49(1), 51 (1994)

    Article  ADS  Google Scholar 

  15. Rui Ju Guo et al, Chin. Phys. C 41, 084105 (2017)

    Article  ADS  Google Scholar 

  16. G Rainovski et al, Phys. Rev. C 65, 044327 (2002)

    Article  ADS  Google Scholar 

  17. S S Ghugre et al, Phys. Rev. C 51, 2809 (1995)

    Article  ADS  Google Scholar 

  18. E A Stefanova et al, Phys. Rev. C 63, 064315 (2001)

    Article  ADS  Google Scholar 

  19. L He et al, Sci. Sin-Phys. Mech. Astron. 42(3), 249 (2012)

    Article  Google Scholar 

  20. T Fukuchi et al, Eur. Phys. J. A 24, 249 (2005)

    Article  ADS  Google Scholar 

  21. S S Ghugre et al, Phys. Rev. C 61, 024302 (1999)

    Article  ADS  Google Scholar 

  22. E Galindo et al, Phys. Rev. C 69, 024304 (2004)

    Article  ADS  Google Scholar 

  23. B A Brown and W D M Rae, Nushell@MSU, MSU-NSCL report (2007)

  24. Balraj Singh, Nuclear Data Sheets 114, 1 (2013)

    Article  ADS  Google Scholar 

  25. Coral M Baglin, Nuclear Data Sheets 112, 1163 (2011)

    Article  ADS  Google Scholar 

  26. Coral M Baglin, Nuclear Data Sheets 116, 1 (2014)

    Article  Google Scholar 

  27. Coral M Baglin, Nuclear Data Sheets 114, 1293 (2013)

    Article  ADS  Google Scholar 

  28. Coral M Baglin, Nuclear Data Sheets 111, 525 (2010)

    Article  Google Scholar 

  29. M G Porquet et al, Eur. Phys. J. A28, 153 (2006)

    Article  ADS  Google Scholar 

  30. W F Piel et al, Phys. Rev. C 41, 1223 (1990)

    Article  ADS  Google Scholar 

  31. P Federman and S Pittel, Phys. Lett. B 69, 385 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos 11775098 and 11405072, Jilin Scientific and Technological Development Program Nos 20190201137JC and 20180520195JH, the 13th Five-Year Plan of Scientific Research of Jilin Province No. JJKH20180117 and China Postdoctoral Science Foundation Nos 2015M571354 and 2013M541285, the Key Program of the Education Department of Anhui Province under Grant Nos KJ2017A369 and KJ2017A365. Computations were carried out on the server hosted by the School of Physics and Electronic Engineering of An Qing Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Heng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y.H., Ma, K.Y., Cheng, F. et al. Shell model description of the core excited level structure of \(^{89}\)Sr nucleus and systematic features of the \(N=51\) odd-A isotones. Pramana - J Phys 94, 53 (2020). https://doi.org/10.1007/s12043-020-1917-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1917-x

Keywords

PACS Nos

Navigation