Skip to main content
Log in

Energy Spectrum and Optical Properties of C24 Fullerene within the Hubbard Model

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Anti-commutator Green’s functions and the energy spectra of C24 fullerene with the symmetry groups D6, D6d, and Oh are obtained in analytical form within the Hubbard model, in the mean-field approximation. Using the methods of group theory, the classification of energy states is carried out and the allowed transitions in the energy spectra of C24 fullerene are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. Von Helden, M. T. Hsu, N. G. Gotts, P. R. Kemper, and M. T. Bowers, “Do small fullerenes exist only on the computer? Experimental results on \({\text{C}}_{{20}}^{{ + / - }}\) and \({\text{C}}_{{24}}^{{ + / - }}\),” Chem. Phys. Lett. 204, 15–22 (1993).

    Article  CAS  Google Scholar 

  2. M. N. Akhtar, B. Ahmad, and S. Ahmad, “Low energy heavy ion detection with the plastic scintillator NE102E,” Nucl. Instrum. Methods Phys. Res., Sect. B 207, 333–338 (2003).

    CAS  Google Scholar 

  3. F. Jensen, “C24: Ring or fullerene,” J. Chem. Phys. 108, 3213–3217 (1998).

    Article  CAS  Google Scholar 

  4. N. N. Breslavskaya, A. A. Levin, and A. L. Buchachenko, “Endofullerenes: size effects on structure and energy,” Russ. Chem. Bull. 53, 18–23 (2004).

    Article  CAS  Google Scholar 

  5. T. Oku, M. Kuno, H. Kitahara, and I. Navita, “Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials,” Int. J. Inorg. Mater. 3, 597–612 (2001).

    Article  CAS  Google Scholar 

  6. H. S. Wu and J. F. Jia, “Structures and stabilities of C24 and B12N12 clusters,” Chin. J. Struct. Chem. 23, 580–585 (2004).

    Google Scholar 

  7. W. An, N. Shao, S. Bulusu, and X. C. Zeng, “Ab initio calculation of carbon clusters,” J. Chem. Phys. 128, 084301 (2008).

    Article  Google Scholar 

  8. V. A. Greshnyakov and E. A. Belenkov, “Diamond-like phase formed of carbon C24 clusters,” J. Phys.: Conf. Ser. 447, 012018 (2018).

    Google Scholar 

  9. Y. Zhang and X. Cheng, “Hydrogen storage property of alkali and alkaline-earth metal atoms decorated C24 fullerene: A DFT study,” Chem. Phys. 505, 26–33 (2018).

    Article  CAS  Google Scholar 

  10. R. A. Harris and L. M. Falicov, “Self-consistent theory of bond alternation in polyenes: Normal state, charge-density waves, and spin-density waves,” J. Chem. Phys. 51, 5034–5041 (1969).

    Article  CAS  Google Scholar 

  11. J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. London, Ser. A 276, 238–257 (1963).

    Article  Google Scholar 

  12. G. S. Ivanchenko and N. G. Lebedev, “Electrical conductivity of double-walled carbon nanotubes in the framework of the Hubbard model,” Phys. Solid State 49, 189–196 (2007).

    Article  CAS  Google Scholar 

  13. A. V. Silant’ev, “A research of nanosystems within the hubbard model by mean field approximation,” Izv. Vuzov. Povolzhskii Region. Fiz.-Mat. Nauki, No. 1, 101–112 (2016).

    Google Scholar 

  14. A. V. Silant’ev, “Energy spectrum and optical properties of C60 fullerene within the Hubbard model,” Phys. Met. Metallogr. 118, 1–9 (2017).

    Article  Google Scholar 

  15. A. V. Silant’ev, “The energy spectrum and optical properties of fullerene C70 within the Hubbard model,” Opt. Spectrosc. 124, 155–162 (2018).

    Article  Google Scholar 

  16. A. V. Silant’ev, “Influence of deformation on the energy spectrum and the optical properties of fullerene C20 within the Hubbard model,” Phys. Met. Metallogr. 119, 511–519 (2018).

    Article  Google Scholar 

  17. A. V. Silant’ev, “The energy spectrum and optical properties of fullerene C36 within the Hubbard model,” Opt. Spectrosc. 127, 190–198 (2019).

    Article  Google Scholar 

  18. A. V. Silant’ev, “A dimer in the extended Hubbard model,” Russ. Phys. J. 57, 1491–1502 (2015).

    Article  Google Scholar 

  19. A. V. Silant’ev, “A dimer in the Hubbard model,” Izv. Vuzov. Povolzhskii Region. Fiz.-Mat. Nauki, No. 1, 168–182 (2015).

    Google Scholar 

  20. V. V. Pokropivny and A. L. Ivanovskii, “New nanoforms of carbon and boron nitride,” Russ. Chem. Rev. 77, 837–873 (2008).

    Article  CAS  Google Scholar 

  21. I. I. Sobel’man, Introduction to Theory of Atomic Spectra (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  22. I. B. Bersuker, The Yahn–Teller Effect (Cambridge University, Cambridge, 2006).

    Book  Google Scholar 

  23. E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (New York, Academic, 1959; Inostrannaya Leteratura, Moscow, 1961).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Silant’ev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silant’ev, A.V. Energy Spectrum and Optical Properties of C24 Fullerene within the Hubbard Model. Phys. Metals Metallogr. 121, 195–201 (2020). https://doi.org/10.1134/S0031918X20010160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20010160

Keywords:

Navigation