Skip to main content
Log in

Phase Transformations in Ni(Co)–Mn(Cr,C)–(In,Sn) Alloys: An Ab Initio Study

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—The phase transformations in the Heusler alloys of Ni(Co)–Mn(Cr,C)–In and Ni(Co)–Mn(Cr,C)–Sn(Al) have been studied in this work using the density-functional theory. The possibility of martensitic phase transitions from the cubic L21-structure into tetragonal L10-state has been predicted, and the transition temperatures have been estimated. Energetically favorable magnetic configurations, lattice parameters, and magnetic moments of austenite and martensite phases have been determined. The Curie temperatures and elastic moduli of cubic phases of alloys have been calculated. In Ni–Mn–Sn alloys with Co addition, the effect of exchange-correlation functional on the ground state has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, O. Gutfleisch, “Giant magnetocaloric effect driven by structural transitions,” Nature Mater. 11, 620–626 (2012).

    Article  CAS  Google Scholar 

  2. T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni–Mn–In–Co,” Appl. Phys. Lett. 106, 021901 (2015).

    Article  Google Scholar 

  3. D. Y. Cong, S. Roth, and L. Schultz, “Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys,” Acta Mater. 60, 5335–5351 (2012).

    Article  CAS  Google Scholar 

  4. V. K. Sharma, M. K. Chattopadhyay, L. S. Sharath Chandra, and S. B. Roy, “Elevating the temperature regime of the large magnetocaloric effect in a Ni–Mn–In alloy towards room temperature,” J. Phys. D: Appl. Phys. 44, 145002 (2011).

    Article  Google Scholar 

  5. V. K. Sharma, M. K. Chattopadhyay, L. S. Sharath Chandra, A. Khandelwal, R. K. Meena, and S. B. Roy, “Scaling of the isothermal entropy change and magnetoresistance in Ni–Mn–In based off-stoichiometric Heusler alloys,” Eur. Phys. J. Appl. Phys. 62, 30601 (2013).

    Article  Google Scholar 

  6. V. Sánchez-Alarcos, V. Recarte, J. I. Pérez-Landazábal, J. R. Chapelon, and J. A. Rodríguez-Velamazán, “Structural and magnetic properties of Cr-doped Ni–Mn–In metamagnetic shape memory alloys,” J. Phys. D: Appl. Phys. 44, 395001 (2011).

    Article  Google Scholar 

  7. M. Khan, J. Jung, S. S. Stoyko, A. Mar, A. Quetz, T. Samanta, I. Dubenko, N. Ali, S. Stadler, and K. H. Chow, “The role of Ni–Mn hybridization on the martensitic phase transitions in Mn-rich Heusler alloys,” Appl. Phys. Lett. 100, 172403 (2012).

    Article  Google Scholar 

  8. M. Khan, I. Dubenko, S. Stadler, J. Jung, S. S. Stoyko, A. Mar, A. Quetz, T. Samanta, N. Ali, and K. H. Chow, “Enhancement of ferromagnetism by Cr doping in Ni–Mn–Cr–Sb Heusler alloys,” Appl. Phys. Lett. 102, 112402 (2013).

    Article  Google Scholar 

  9. M. A. Zagrebin, V. V. Sokolovskiy, and V. D. Buchelnikov, “Ground state and magnetic properties of the Cr-doped Ni–Mn–(Ga, Ge, In, Sn) alloys: Insights from ab initio study,” J. Magn. Magn. Mater. 470, 123–126 (2019).

    Article  CAS  Google Scholar 

  10. V. V. Sokolovskiy, P. Entel, V. D. Buchelnikov, and M. Gruner, “Achieving large magnetocaloric effects in Co-and Cr-substituted Heusler alloys: Predictions from first-principles and Monte Carlo studies,” Phys. Rev. B 91, 220409(R) (2015).

    Article  Google Scholar 

  11. Sokolovskiy V.V., Buchelnikov V.D., Gruner M., Entel P., “First-Principles Calculations of Magnetic Properties of Cr-Doped Ni45Co5Mn37In13 Heusler Alloys,” IEEE Trans. Mag. 51, 2502504 (2015).

    Article  Google Scholar 

  12. V. D. Buchelnikov, V. V. Sokolovskiy, M. Gruner, and P. Entel, “Magnetic States of the Ni1.75Co0.25Mn1.25Cr0.25In0.5 Heusler Alloy,” IEEE Trans. Mag. 51, 2502104 (2015).

    Article  Google Scholar 

  13. V. V. Sokolovskiy, M. A. Zagrebin, and V. D. Buchelnikov, “Magnetocaloric effect in Ni–Co–Mn–(Sn,Al) Heusler alloys: Theoretical study,” J. Magn. Magn. Mater. 459, 295–300 (2018).

    Article  CAS  Google Scholar 

  14. S. Pandey, A. Quetz, A. Aryal, A. Us Saleheen, I. Rodionov, M. Blinov, M. Prudnikova, I. Dubenko, V. Prudnikov, D. Mazumdar, A. Granovsky, S. Stadler, and N. Ali, “Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni50Mn37In13,” AIP Adv. 7, 056433 (2017).

    Article  Google Scholar 

  15. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab Initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  16. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1996).

    Article  Google Scholar 

  17. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, 864–867 (1964).

    Article  Google Scholar 

  18. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, 1133–1138 (1965).

    Article  Google Scholar 

  19. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  21. J. Sun, A. Ruzsinszky, and J. P. Perdew, “Strongly constrained and appropriately normed semilocal density functional,” Phys. Rev. Lett. 115, 036402 (2015).

    Article  Google Scholar 

  22. J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, “Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation,” Phys. Rev. Lett. 82, 2544–2547 (1999).

    Article  CAS  Google Scholar 

  23. J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids,” Phys. Rev. Lett. 91, 146401 (2003).

    Article  Google Scholar 

  24. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  25. C. W. Glass, A. R. Oganov, and N. Hansen, “USPEX—Evolutionary crystal structure prediction,” Comp. Phys. Comm. 175, 713–720 (2006).

    Article  CAS  Google Scholar 

  26. A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, “New developments in evolutionary structure prediction algorithm USPEX,” Comp. Phys. Comm. 184, 1172–1182 (2013).

    Article  CAS  Google Scholar 

  27. H. Ebert, “Fully relativistic band structure calculations for magnetic solids—Formalism and application,” in Electronic Structure and Physical Properties of Solids: The Use of the LMTO Method, Ed. by H. Dreyssé, Lecture Notes in Physics, vol. 535, pp. 191–246 (1999).

    Google Scholar 

  28. H. Ebert, D. Ködderitzsch, and J. Minár, “Calculating condensed matter properties using the KKR-Green’s function method—Recent developments and applications,” Rep. Prog. Phys. 74, 096501 (2011).

    Article  Google Scholar 

  29. D. N. Lobo, K. R. Priolkar, S. Emura, and A. K. Nigam, “Ferromagnetic interactions and martensitic transformation in Fe doped Ni–Mn–In shape memory alloys,” J. Appl. Phys. 116, 183903 (2014).

    Article  Google Scholar 

  30. K. R. Priolkar, D. N. Lobo, P. A. Bhobe, S. Emura, and A. K. Nigam, “Role of Ni–Mn hybridization in the magnetism of the martensitic state of Ni–Mn–In shape memory alloys,” Europhys. Lett. 94, 38006 (2011).

    Article  Google Scholar 

  31. T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys,” Phys. Rev. B 73, 174413 (2006).

    Article  Google Scholar 

  32. X. Moya, D. González-Alonso, L. Mañosa, A. Planes, V. O. Garlea, T. A. Lograsso, D. L. Schlagel, J. L. Zarestky, S. Aksoy, and M. Acet, “Lattice dynamics in magnetic superelastic Ni–Mn–In alloys: Neutron scattering and ultrasonic experiments,” Phys. Rev. B 79, 214118 (2009).

    Article  Google Scholar 

  33. P. Czaja, R. Chulist, A. Zywczak, L. Hawelek, and J. Przewóznik, “The effect of a multiphase microstructure on the inverse magnetocaloric effect in Ni–Mn–Cr–Sn metamagnetic Heusler alloys,” Magnetochemistry 3 (3), 24 (2017).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant No. 17‑72-20022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Buchelnikov.

Additional information

Translated by O. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchelnikov, V.D., Sokolovskiy, V.V., Miroshkina, O.N. et al. Phase Transformations in Ni(Co)–Mn(Cr,C)–(In,Sn) Alloys: An Ab Initio Study. Phys. Metals Metallogr. 121, 202–209 (2020). https://doi.org/10.1134/S0031918X20020039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20020039

Keywords:

Navigation