Skip to main content
Log in

The Matched Product of the Solutions to the Yang–Baxter Equation of Finite Order

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work, we focus on the set-theoretical solutions of the Yang–Baxter equation which are of finite order and not necessarily bijective. We use the matched product of solutions as a unifying tool for treating these solutions of finite order, that also include involutive and idempotent solutions. In particular, we prove that the matched product of two solutions \(r_S\) and \(r_T\) is of finite order if and only if \(r_S\) and \(r_T\) are. Furthermore, we show that with sufficient information on \(r_S\) and \(r_T\), we can precisely establish the order of the matched product. Finally, we prove that if B is a finite semi-brace, then the associated solution r satisfies \(r^n=r\), for an integer n closely linked with B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachiller, D.: Extensions, matched products, and simple braces. J. Pure Appl. Algebra 222(7), 1670–1691 (2018). https://doi.org/10.1016/j.jpaa.2017.07.017

    Article  MathSciNet  MATH  Google Scholar 

  2. Bachiller, D., Cedó, F., Jespers, E., Okniński, J.: A family of irretractable square-free solutions of the Yang–Baxter equation. Forum Math. 29(6), 1291–1306 (2017). https://doi.org/10.1515/forum-2015-0240

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachiller, D., Cedó, F., Jespers, E., Okniński, J.: Iterated matched products of finite braces and simplicity; new solutions of the Yang–Baxter equation. Trans. Am. Math. Soc. 370(7), 4881–4907 (2018). https://doi.org/10.1090/tran/7180

    Article  MathSciNet  MATH  Google Scholar 

  4. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972). https://doi.org/10.1016/0003-4916(72)90335-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Castelli, M., Catino, F., Pinto, G.: A new family of set-theoretic solutions of the Yang–Baxter equation. Commun. Algebra 46(4), 1622–1629 (2018). https://doi.org/10.1080/00927872.2017.1350700

    Article  MathSciNet  MATH  Google Scholar 

  6. Catino, F., Colazzo, I., Stefanelli, P.: On regular subgroups of the affine group. Bull. Aust. Math. Soc. 91(1), 76–85 (2015). https://doi.org/10.1017/S000497271400077X

    Article  MathSciNet  MATH  Google Scholar 

  7. Catino, F., Colazzo, I., Stefanelli, P.: Regular subgroups of the affine group and asymmetric product of radical braces. J. Algebra 455, 164–182 (2016). https://doi.org/10.1016/j.jalgebra.2016.01.038

    Article  MathSciNet  MATH  Google Scholar 

  8. Catino, F., Colazzo, I., Stefanelli, P.: Semi-braces and the Yang–Baxter equation. J. Algebra 483, 163–187 (2017). https://doi.org/10.1016/j.jalgebra.2017.03.035

    Article  MathSciNet  MATH  Google Scholar 

  9. Catino, F., Colazzo, I., Stefanelli, P.: The matched product of set-theoretical solutions of the Yang–Baxter equation. J. Pure Appl. Algebra (2019). https://doi.org/10.1016/j.jpaa.2019.07.012

    Article  MATH  Google Scholar 

  10. Catino, F., Colazzo, I., Stefanelli, P.: Skew left braces with non-trivial annihilator. J. Algebra Appl. 18(2), 1950033–23 (2019). https://doi.org/10.1142/S0219498819500336

    Article  MathSciNet  MATH  Google Scholar 

  11. Cedó, F., Gateva-Ivanova, T., Smoktunowicz, A.: Braces and symmetric groups with special conditions. J. Pure Appl. Algebra 222(12), 3877–3890 (2018). https://doi.org/10.1016/j.jpaa.2018.02.012

    Article  MathSciNet  MATH  Google Scholar 

  12. Cedó, F., Jespers, E., del Río, A.: Involutive Yang–Baxter groups. Trans. Am. Math. Soc. 362(5), 2541–2558 (2010). https://doi.org/10.1090/S0002-9947-09-04927-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Cedó, F., Jespers, E., Okniński, J.: Braces and the Yang–Baxter equation. Commun. Math. Phys. 327(1), 101–116 (2014). https://doi.org/10.1007/s00220-014-1935-y

    Article  MathSciNet  MATH  Google Scholar 

  14. Childs, L.N.: Skew braces and the Galois correspondence for Hopf Galois structures. J. Algebra 511, 270–291 (2018). https://doi.org/10.1016/j.jalgebra.2018.06.023

    Article  MathSciNet  MATH  Google Scholar 

  15. Colazzo, I.: Left semi-braces and the Yang–Baxter equation, Ph.D. thesis, University of Salento (2017)

  16. Drinfel’d, V.G.: On some unsolved problems in quantum group theory, in: Quantum groups (Leningrad, 1990), vol. 1510 of Lecture Notes in Math., Springer, Berlin, 1992, pp. 1–8. https://doi.org/10.1007/BFb0101175

  17. Elhamdadi, M., Fernando, N., Tsvelikhovskiy, B.: Ring theoretic aspects of quandles. J. Algebra 526, 166–187 (2019). https://doi.org/10.1016/j.jalgebra.2019.02.011

    Article  MathSciNet  MATH  Google Scholar 

  18. Etingof, P., Schedler, T., Soloviev, A.: Set-theoretical solutions to the quantum Yang–Baxter equation. Duke Math. J. 100(2), 169–209 (1999). https://doi.org/10.1215/S0012-7094-99-10007-X

    Article  MathSciNet  MATH  Google Scholar 

  19. Gateva-Ivanova, T.: Set-theoretic solutions of the Yang–Baxter equation, braces and symmetric groups. Adv. Math. 338, 649–701 (2018). https://doi.org/10.1016/j.aim.2018.09.005

    Article  MathSciNet  MATH  Google Scholar 

  20. Gateva-Ivanova, T., Majid, S.: Matched pairs approach to set theoretic solutions of the Yang–Baxter equation. J. Algebra 319(4), 1462–1529 (2008). https://doi.org/10.1016/j.jalgebra.2007.10.035

    Article  MathSciNet  MATH  Google Scholar 

  21. Gateva-Ivanova, T., Van den Bergh, M.: Semigroups of \(I\)-type. J. Algebra 206(1), 97–112 (1998). https://doi.org/10.1006/jabr.1997.7399

    Article  MathSciNet  MATH  Google Scholar 

  22. Guarnieri, L., Vendramin, L.: Skew braces and the Yang–Baxter equation. Math. Comp. 86(307), 2519–2534 (2017). https://doi.org/10.1090/mcom/3161

    Article  MathSciNet  MATH  Google Scholar 

  23. Howie, J.M.: Fundamentals of semigroup theory, vol. 12 of London Mathematical Society Monographs. New Series, The Clarendon Press, Oxford University Press, New York, oxford Science Publications (1995)

  24. Jespers, E., Van Antwerpen, A.: Left semi-braces and solutions of the Yang–Baxter equation. Forum Math. 31(1), 241–263 (2019). https://doi.org/10.1515/forum-2018-0059

    Article  MathSciNet  MATH  Google Scholar 

  25. Lebed, V.: Cohomology of idempotent braidings with applications to factorizable monoids. Internat. J. Algebra Comput. 27(4), 421–454 (2017). https://doi.org/10.1142/S0218196717500229

    Article  MathSciNet  MATH  Google Scholar 

  26. Lebed, V., Vendramin, L.: Skew left braces of nilpotent type, Proc. Edinb. Math. Soc. In Press. https://doi.org/10.1112/plms.12209

  27. Lu, J.-H., Yan, M., Zhu, Y.-C.: On the set-theoretical Yang–Baxter equation. Duke Math. J. 104(1), 1–18 (2000). https://doi.org/10.1215/S0012-7094-00-10411-5

    Article  MathSciNet  MATH  Google Scholar 

  28. Nejabati Zenouz, K.: Skew braces and Hopf-Galois structures of Heisenberg type. J. Algebra 524, 187–225 (2019). https://doi.org/10.1016/j.jalgebra.2019.01.012

    Article  MathSciNet  MATH  Google Scholar 

  29. Nelson, S.: The combinatorial revolution in knot theory. Notices Am. Math. Soc. 58(11), 1553–1561 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Rump, W.: Braces, radical rings, and the quantum Yang–Baxter equation. J. Algebra 307(1), 153–170 (2007). https://doi.org/10.1016/j.jalgebra.2006.03.040

    Article  MathSciNet  MATH  Google Scholar 

  31. Rump, W.: Classification of cyclic braces. J. Pure Appl. Algebra 209(3), 671–685 (2007). https://doi.org/10.1016/j.jpaa.2006.07.001

    Article  MathSciNet  MATH  Google Scholar 

  32. Smoktunowicz, A.: On Engel groups, nilpotent groups, rings, braces and the Yang–Baxter equation. Trans. Am. Math. Soc. 370(9), 6535–6564 (2018). https://doi.org/10.1090/tran/7179

    Article  MathSciNet  MATH  Google Scholar 

  33. Smoktunowicz, A., Vendramin, L.: On skew braces (with an appendix by N. Byott and L. Vendramin), J. Comb. Algebra 2(1):47–86. (2018) https://doi.org/10.4171/JCA/2-1-3

  34. Soloviev, A.: Non-unitary set-theoretical solutions to the quantum Yang–Baxter equation. Math. Res. Lett. 7(5–6), 577–596 (2000). https://doi.org/10.4310/MRL.2000.v7.n5.a4

    Article  MathSciNet  MATH  Google Scholar 

  35. Vendramin, L.: Extensions of set-theoretic solutions of the Yang–Baxter equation and a conjecture of Gateva-Ivanova. J. Pure Appl. Algebra 220(5), 2064–2076 (2016). https://doi.org/10.1016/j.jpaa.2015.10.018

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967). https://doi.org/10.1103/PhysRevLett.19.1312

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, D.: The interplay between \(k\)-graphs and the Yang–Baxter equation. J. Algebra 451, 494–525 (2016). https://doi.org/10.1016/j.jalgebra.2016.01.001

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, D.: Affine actions and the Yang–Baxter equation. Adv. Oper. Theory 3(3), 710–730 (2018). https://doi.org/10.15352/aot.1801-1298

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee for the thorough and detailed review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Catino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the Department of Mathematics and Physics “Ennio De Giorgi”—University of Salento. The authors are members of GNSAGA (INdAM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catino, F., Colazzo, I. & Stefanelli, P. The Matched Product of the Solutions to the Yang–Baxter Equation of Finite Order. Mediterr. J. Math. 17, 58 (2020). https://doi.org/10.1007/s00009-020-1483-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-1483-y

Keywords

Mathematics Subject Classification

Navigation