Skip to main content
Log in

The quantum DELL system

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose quantum Hamiltonians of the double-elliptic many-body integrable system (DELL) and study its spectrum. These Hamiltonians are certain elliptic functions of coordinates and momenta. Our results provide quantization of the classical DELL system which was previously found in the string theory literature. The eigenfunctions for the N-body model are instanton partition functions of 6d SU(N) gauge theory with adjoint matter compactified on a torus with a codimension-two defect. As a by-product, we discover new family of symmetric orthogonal polynomials which provide an elliptic generalization to Macdonald polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. See section 4 of [44] for review and references.

  2. We thank Francesco Benini for discussions about this topic.

  3. N degrees of freedom with removed center of mass.

  4. We thank the authors of [4] for continuing discussions on this.

  5. Since theta-functions often appear in ratios in our calculations, we shall omit prefactor \(2x^{1/4}\) in the definition of \(\theta _1(x|p)\).

  6. Extra compact directions of the 6d theory will be implemented in the character formula.

  7. We refer the reader to section 4.2 of [12] for detailed explanations.

References

  1. Aminov, G., Braden, H.W., Mironov, A., Morozov, A., Zotov, A.: Seiberg–Witten curves and double-elliptic integrable systems. JHEP 01, 033 (2015). arXiv:1410.0698

    Article  ADS  MathSciNet  Google Scholar 

  2. Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in N=2 gauge theory and Liouville modular geometry. JHEP 1001, 113 (2010). arXiv:0909.0945

    Article  ADS  MathSciNet  Google Scholar 

  3. Aharony, O.: A brief review of “little string theories”. Class. Quant. Gravity 17, 929–938 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Aminov, G., Mironov, A., Morozov, A.: New non-linear equations and modular form expansion for double-elliptic SeibergWitten prepotential. Eur. Phys. J. C 76(8), 433 (2016). arXiv:1606.05274

    Article  ADS  Google Scholar 

  5. Aminov, G., Mironov, A., Morozov, A.: Modular properties of 6d (DELL) systems. JHEP 11, 023 (2017). arXiv:1709.04897

    Article  ADS  MathSciNet  Google Scholar 

  6. Aminov, G., Mironov, A., Morozov, A., Zotov, A.: Three-particle integrable systems with elliptic dependence on momenta and theta function identities. Phys. Lett. B 726, 802–808 (2013). arXiv:1307.1465

    Article  ADS  MathSciNet  Google Scholar 

  7. Aganagic, M., Okounkov, A.: Elliptic stable envelope (2016). arXiv:1604.00423

  8. Aganagic, M., Shakirov, S.: Knot homology and refined Chern–Simons index. Commun. Math. Phys. 333(1), 187–228 (2015). arXiv:1105.5117

    Article  ADS  MathSciNet  Google Scholar 

  9. Alday, L.F., Tachikawa, Y.: Affine SL(2) conformal blocks from 4d gauge theories. Lett. Math. Phys. 94, 87–114 (2010). arXiv:1005.4469

    Article  ADS  MathSciNet  Google Scholar 

  10. Braden, H., Gorsky, A., Odessky, A., Rubtsov, V.: Double elliptic dynamical systems from generalized Mukai–Sklyanin algebras. Nucl. Phys. B 633, 414–442 (2002). arXiv:hep-th/0111066

    Article  ADS  MathSciNet  Google Scholar 

  11. Braden, H.W., Hollowood, T.J.: The curve of compactified 6-D gauge theories and integrable systems. JHEP 0312, 023 (2003). arXiv:hep-th/0311024

    Article  ADS  MathSciNet  Google Scholar 

  12. Bullimore, M., Kim, H.C., Koroteev, P.: Defects and quantum Seiberg–Witten geometry. JHEP 05, 095 (2015). arXiv:1412.6081

    Article  ADS  MathSciNet  Google Scholar 

  13. Braden, H., Marshakov, A., Mironov, A., Morozov, A.: On double elliptic integrable systems. 1. A duality argument for the case of SU(2). Nucl. Phys. 573, 553–572 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Donagi, R., Witten, E.: Supersymmetric Yang–Mills theory and integrable systems. Nucl. Phys. B 460, 299 (1996). https://doi.org/10.1016/0550-3213(95)00609-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Etingof, P., Kirillov Jr. A.: On the affine analogue of Jack’s and Macdonald’s polynomials. arXiv:hep-th/9403168

  16. Etingof, P.: Difference equations with elliptic coefficients and quantum affine algebras. arXiv:hep-th/9312057

  17. Gaiotto, D., Gukov, S., Seiberg, N.: Surface defects and resolvents. JHEP 1309, 070 (2013). arXiv:1307.2578

    Article  ADS  Google Scholar 

  18. Gaiotto, D., Koroteev, P.: On three dimensional quiver gauge theories and integrability. JHEP 1305, 126 (2013). arXiv:1304.0779

    Article  ADS  MathSciNet  Google Scholar 

  19. Gorsky, A., Krichever, I., Marshakov, A., Mironov, A., Morozov, A.: Integrability and Seiberg–Witten exact solution. Phys. Lett. B 355, 466–474 (1995). arXiv:hep-th/9505035

    Article  ADS  MathSciNet  Google Scholar 

  20. Hitchin, N.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91 (1987)

    Article  MathSciNet  Google Scholar 

  21. Hollowood, T.J., Iqbal, A., Vafa, C.: Matrix models, geometric engineering and elliptic genera. JHEP 0803, 069 (2008). arXiv:hep-th/0310272

    Article  ADS  MathSciNet  Google Scholar 

  22. Haghighat, B., Kim, J., Yan, W., Yau, S.T.: D-type fiber-base duality. JHEP 09, 060 (2018). arXiv:1806.10335

    Article  ADS  MathSciNet  Google Scholar 

  23. Haghighat, B., Yan, W.: M-strings in thermodynamic limit: Seiberg–Witten geometry (2016). arXiv:1607.07873

  24. Inozemtsev, V.I.: The finite Toda lattices. Commun. Math. Phys. 121(4), 629–638 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  25. Kim, J., Kim, S., Lee, K.: Higgsing towards e-strings (2015). arXiv:1510.03128

  26. Koroteev, P.: A-type quiver varieties and ADHM moduli spaces (2018). arXiv:1805.00986

  27. Koroteev, P., Pushkar, P.P., Smirnov, A., Zeitlin, A.M.: Quantum K-theory of quiver varieties and many-body systems (2017). arXiv:1705.10419

  28. Koroteev, P., Sciarappa, A.: On elliptic algebras and large-n supersymmetric gauge theories. J. Math. Phys. 57, 112302 (2016). arXiv:1601.08238

    Article  ADS  MathSciNet  Google Scholar 

  29. Koroteev, P., Sciarappa, A.: Quantum hydrodynamics from large-n supersymmetric gauge theories. Lett. Math. Phys. 108, 45–95 (2018). arXiv:1510.00972

    Article  ADS  MathSciNet  Google Scholar 

  30. Losev, A., Moore, G., Shatashvili, S.L.: M&m’s. Nucl. Phys. B 522, 105–124 (1998)

    Article  ADS  Google Scholar 

  31. Mironov, A.: Seiberg-Witten theory and duality in integrable systems. In: 34th Annual Winter School on Nuclear and Particle Physics (PNPI 2000) Gatchina, Russia, February 14–20 (2000)

  32. Mironov, A., Morozov, A.: Commuting hamiltonians from Seiberg–Witten theta functions. Phys. Lett. B 475, 71–76 (2000). arXiv:hep-th/9912088

    Article  ADS  MathSciNet  Google Scholar 

  33. Mironov, A., Morozov, A.: Double elliptic systems: problems and perspectives (1999). arXiv:hep-th/0001168

  34. Martinec, E.J., Warner, N.P.: Integrable systems and supersymmetric gauge theory. Nucl. Phys. B 459, 97–112 (1996). arXiv:hep-th/9509161

    Article  ADS  MathSciNet  Google Scholar 

  35. Nawata, S.: Givental J-functions, quantum integrable systems, AGT relation with surface operator (2014). arXiv:1408.4132

  36. Negut, A.: Laumon spaces and the Calogero-Sutherland integrable system. Invent. Math. 178(2), 299–331 (2009). https://doi.org/10.1007/s00222-009-0198-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004). arXiv:hep-th/0206161(To Arkady Vainshtein on his 60th anniversary)

  38. Nekrasov, N.: BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and qq-characters. JHEP 03, 181 (2016). arXiv:1512.05388

    Article  ADS  Google Scholar 

  39. Nekrasov, N.: BPS/CFT correspondence IV: sigma models and defects in gauge theory. Lett. Math. Phys. (2017). arXiv:1711.11011

  40. Nekrasov, N.: BPS/CFT correspondence V: BPZ and KZ equations from qq-characters (2017). arXiv:1711.11582

  41. Nieri, F.: An elliptic Virasoro symmetry in 6d (2015). arXiv:1511.00574

  42. Nekrasov, N., Okounkov, A.: Seiberg–Witten theory and random partitions. In: Etingof, P., Retakh, V.S., Singer, I.M. (eds.) The Unity of Mathematics. Springer, Berlin (2003). arXiv:hep-th/0306238

  43. Nieri, F., Pasquetti, S.: Factorisation and holomorphic blocks in 4d. JHEP 11, 155 (2015). arXiv:1507.00261

    Article  ADS  MathSciNet  Google Scholar 

  44. Nekrasov, N., Pestun, V., Shatashvili, S.: Quantum geometry and quiver gauge theories. Commun. Math. Phys. 357(2), 519–567 (2018). arXiv:1312.6689

    Article  ADS  MathSciNet  Google Scholar 

  45. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories (2009). arXiv:0908.4052

  46. Seiberg, N.: Matrix description of m-theory on t5t5 and t5/z2t5/z2. Phys. Lett. B 408, 98–104 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  47. Seiberg, N., Witten, E.: Monopole condensation, and confinement in N=2 supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). arXiv:hep-th/9407087

    Article  ADS  Google Scholar 

  48. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994). arXiv:hep-th/9408099

    Article  ADS  MathSciNet  Google Scholar 

  49. Witten, E.: Some comments on string dynamics (1995)

Download references

Acknowledgements

This manuscript took some time to complete primarily due to the technical computational difficulties of expressions involving double-periodic functions. We would like to thank numerous people with whom we discussed these and other matters, as well as various institutions which we visited in the last several years, but our special acknowledgements go to Babak Haghigat, Wenbin Yan, Can Kozcaz and Francesco Benini who participated in earlier stages of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Koroteev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Spectrum of the three-body DELL model

Appendix: Spectrum of the three-body DELL model

Similarly to the U(2) example in (4.19,4.20) for U(3) 6d theory, the eigenfunction (4.12) for \(\mathbf j =(1,0,0)\) reads (we highlight elliptic parameters p and w in the expansion in bold)

$$\begin{aligned} {\mathscr {Z}}(\mathbf{x})= & {} x_{1}+x_{2}+x_{3}\\&+ \mathbf{{p}}\frac{q (-1+t)}{(q-1) (q t-1)^3 (q t+1)^2 t}\\&\cdot (q^4 t^6 x_{1}^3 x_{2}+q^4 t^6 x_{1}^3 x_{3}+2 q^4 t^6 x_{1}^2 x_{2}^2+3 q^4 t^6 x_{1}^2 x_{2} x_{3}\\&+2 q^4 t^6 x_{1}^2x_{3}^2+q^4 t^6 x_{1} x_{2}^3+3 q^4 t^6 x_{1} x_{2}^2 x_{3}\\&+3 q^4 t^6 x_{1} x_{2} x_{3}^2+q^4 t^6 x_{1} x_{3}^3+q^4 t^6 x_{2}^3x_{3}+2 q^4 t^6 x_{2}^2 x_{3}^2\\&+q^4 t^6 x_{2} x_{3}^3-2 q^4 t^5 x_{1}^2 x_{2} x_{3}\\&-2 q^4 t^5 x_{1} x_{2}^2 x_{3}-2 q^4 t^5 x_{1} x_{2} x_{3}^2+2 q^3 t^6 x_{1}^2 x_{2} x_{3}\\&+2 q^3 t^6 x_{1} x_{2}^2 x_{3}+2 q^3 t^6 x_{1} x_{2} x_{3}^2-q^4 t^4 x_{1}^2 x_{2}^2\\&-2 q^4 t^4 x_{1}^2 x_{2} x_{3}-q^4 t^4 x_{1}^2 x_{3}^2-2 q^4 t^4 x_{1} x_{2}^2 x_{3}\\&-2 q^4 t^4 x_{1} x_{2} x_{3}^2-q^4 t^4 x_{2}^2 x_{3}^2-q^3 t^5 x_{1}^3 x_{2}-q^3 t^5 x_{1}^3 x_{3}\\&-q^3 t^5 x_{1}^2 x_{2}^2-q^3 t^5 x_{1}^2 x_{2} x_{3}-q^3 t^5 x_{1}^2 x_{3}^2-q^3 t^5 x_{1} x_{2}^3-q^3 t^5 x_{1} x_{2}^2 x_{3}\\&-q^3 t^5 x_{1} x_{2} x_{3}^2-q^3 t^5 x_{1} x_{3}^3-q^3 t^5 x_{2}^3 x_{3}-q^3 t^5 x_{2}^2 x_{3}^2-q^3 t^5 x_{2} x_{3}^3-q^4 t^3 x_{1}^2 x_{2}^2\\&-q^4 t^3 x_{1}^2 x_{3}^2-q^4 t^3 x_{2}^2 x_{3}^2+2 q^3 t^4 x_{1}^2 x_{2}^2+2 q^3 t^4 x_{1}^2 x_{3}^2+2 q^3 t^4 x_{2}^2 x_{3}^2\\&-q^2 t^5 x_{1}^2 x_{2}^2-q^2 t^5 x_{1}^2 x_{3}^2-q^2 t^5 x_{2}^2 x_{3}^2+q^4 t^2 x_{1}^2 x_{2} x_{3}+q^4 t^2 x_{1} x_{2}^2 x_{3}\\&+q^4 t^2 x_{1} x_{2} x_{3}^2-q^3 t^3 x_{1}^3 x_{2}-q^3 t^3 x_{1}^3 x_{3}\\&-q^3 t^3 x_{1}^2 x_{2}^2-5 q^3 t^3 x_{1}^2 x_{2} x_{3}-q^3 t^3 x_{1}^2 x_{3}^2\\&-q^3 t^3 x_{1} x_{2}^3-5 q^3 t^3 x_{1} x_{2}^2 x_{3}-5 q^3 t^3 x_{1} x_{2} x_{3}^2\\&-q^3 t^3 x_{1} x_{3}^3-q^3 t^3 x_{2}^3 x_{3}-q^3 t^3 x_{2}^2 x_{3}^2\\&-q^3 t^3 x_{2} x_{3}^3-q^2 t^4 x_{1}^3 x_{2}-q^2 t^4 x_{1}^3 x_{3}-3 q^2 t^4 x_{1}^2 x_{2}^2\\&-3 q^2 t^4 x_{1}^2 x_{3}^2-q^2 t^4 x_{1} x_{2}^3-q^2 t^4 x_{1} x_{3}^3-q^2 t^4 x_{2}^3 x_{3}-3 q^2 t^4 x_{2}^2 x_{3}^2\\&-q^2 t^4 x_{2} x_{3}^3-2 q t^5 x_{1}^2 x_{2} x_{3}-2 q t^5 x_{1} x_{2}^2 x_{3}-2 q t^5 x_{1} x_{2} x_{3}^2\\&+2 q^3 t^2 x_{1}^2 x_{2} x_{3}+2 q^3 t^2 x_{1} x_{2}^2 x_{3}+2 q^3 t^2 x_{1} x_{2} x_{3}^2 \end{aligned}$$
$$\begin{aligned}&-2 q t^4 x_{1}^2 x_{2} x_{3}-2 q t^4 x_{1} x_{2}^2 x_{3}-2 q t^4 x_{1} x_{2} x_{3}^2+2 q^3 t x_{1}^2 x_{2} x_{3}+2 q^3 t x_{1} x_{2}^2 x_{3}\\&+2 q^3 t x_{1} x_{2} x_{3}^2+q^2 t^2 x_{1}^3 x_{2}+q^2 t^2 x_{1}^3 x_{3}+3 q^2 t^2 x_{1}^2 x_{2}^2\\&+3 q^2 t^2 x_{1}^2 x_{3}^2+q^2 t^2 x_{1} x_{2}^3+q^2 t^2 x_{1} x_{3}^3+q^2 t^2 x_{2}^3 x_{3}\\&+3 q^2 t^2 x_{2}^2 x_{3}^2+q^2 t^2 x_{2} x_{3}^3+q t^3 x_{1}^3 x_{2}+q t^3 x_{1}^3 x_{3}\\&+q t^3 x_{1}^2 x_{2}^2+5 q t^3 x_{1}^2 x_{2} x_{3}+q t^3 x_{1}^2 x_{3}^2+q t^3 x_{1} x_{2}^3\\&+5 q t^3 x_{1} x_{2}^2 x_{3}+5 q t^3 x_{1} x_{2} x_{3}^2+q t^3 x_{1} x_{3}^3+q t^3 x_{2}^3 x_{3}\\&+q t^3 x_{2}^2 x_{3}^2+q t^3 x_{2} x_{3}^3-t^4 x_{1}^2 x_{2} x_{3}-t^4 x_{1} x_{2}^2 x_{3}-t^4 x_{1} x_{2} x_{3}^2\\&+q^2 t x_{1}^2 x_{2}^2+q^2 t x_{1}^2 x_{3}^2+q^2 t x_{2}^2 x_{3}^2-2 q t^2 x_{1}^2 x_{2}^2\\&-2 q t^2 x_{1}^2 x_{3}^2-2 q t^2 x_{2}^2 x_{3}^2+t^3 x_{1}^2 x_{2}^2+t^3 x_{1}^2 x_{3}^2+t^3 x_{2}^2 x_{3}^2+q t x_{1}^3 x_{2}\\&+q t x_{1}^3 x_{3}+q t x_{1}^2 x_{2}^2+q t x_{1}^2 x_{2} x_{3}+q t x_{1}^2 x_{3}^2+q t x_{1} x_{2}^3+q t x_{1} x_{2}^2 x_{3}\\&+q t x_{1} x_{2} x_{3}^2+q t x_{1} x_{3}^3+q t x_{2}^3 x_{3}+q t x_{2}^2 x_{3}^2+q t x_{2} x_{3}^3+t^2 x_{1}^2 x_{2}^2\\&+2 t^2 x_{1}^2 x_{2} x_{3}+t^2 x_{1}^2 x_{3}^2+2 t^2 x_{1} x_{2}^2 x_{3}\\&+2 t^2 x_{1} x_{2} x_{3}^2+t^2 x_{2}^2 x_{3}^2-2 q x_{1}^2 x_{2} x_{3}-2 q x_{1} x_{2}^2 x_{3}\\&-2 q x_{1} x_{2} x_{3}^2+2 t x_{1}^2 x_{2} x_{3}+2 t x_{1} x_{2}^2 x_{3}+2 t x_{1} x_{2} x_{3}^2-x_{1}^3 x_{2}\\&-x_{1}^3 x_{3}-2 x_{1}^2 x_{2}^2-3 x_{1}^2 x_{2} x_{3}-2 x_{1}^2 x_{3}^2-x_{1} x_{2}^3\\&-3 x_{1} x_{2}^2 x_{3}-3 x_{1} x_{2} x_{3}^2-x_{1} x_{3}^3-x_{2}^3 x_{3}-2 x_{2}^2 x_{3}^2-x_{2} x_{3}^3) \\&+\mathbf w p \dfrac{ (-1+t) (t^3 q-1) (-t+q)}{q (q-1) (q t-1)^3 (q t+1)^2 t^4}\\&\cdot (q^6 t^8 x_{1}^3 x_{2}+q^6 t^8 x_{1}^3 x_{3}+q^6 t^8 x_{1}^2 x_{2}^2\\&+2 q^6 t^8 x_{1}^2 x_{2} x_{3}+q^6 t^8 x_{1}^2 x_{3}^2+q^6 t^8 x_{1} x_{2}^3\\&+2 q^6 t^8 x_{1} x_{2}^2 x_{3}+2 q^6 t^8 x_{1} x_{2} x_{3}^2\\&+q^6 t^8 x_{1} x_{3}^3+q^6 t^8 x_{2}^3 x_{3}+q^6 t^8 x_{2}^2 x_{3}^2\\&+q^6 t^8 x_{2} x_{3}^3-q^6 t^7 x_{1}^2 x_{2}^2-2 q^6 t^7 x_{1}^2 x_{2} x_{3}\\&-q^6 t^7 x_{1}^2 x_{3}^2-2 q^6 t^7 x_{1} x_{2}^2 x_{3}-2 q^6 t^7 x_{1} x_{2} x_{3}^2\\&-q^6 t^7 x_{2}^2 x_{3}^2+q^5 t^8 x_{1}^2 x_{2}^2+2 q^5 t^8 x_{1}^2 x_{2} x_{3}\\&+q^5 t^8 x_{1}^2 x_{3}^2+2 q^5 t^8 x_{1} x_{2}^2 x_{3}+2 q^5 t^8 x_{1} x_{2} x_{3}^2+q^5 t^8 x_{2}^2 x_{3}^2\\&-q^6 t^6 x_{1}^2 x_{2}^2-q^6 t^6 x_{1}^2 x_{2} x_{3}-q^6 t^6 x_{1}^2 x_{3}^2-q^6 t^6 x_{1} x_{2}^2 x_{3}\\&-q^6 t^6 x_{1} x_{2} x_{3}^2-q^6 t^6 x_{2}^2 x_{3}^2-q^5 t^7 x_{1}^3 x_{2}\\&-q^5 t^7 x_{1}^3 x_{3}+q^5 t^7 x_{1}^2 x_{2}^2-q^5 t^7 x_{1}^2 x_{2} x_{3}\\&+q^5 t^7 x_{1}^2 x_{3}^2-q^5 t^7 x_{1} x_{2}^3-q^5 t^7 x_{1} x_{2}^2 x_{3}\\&-q^5 t^7 x_{1} x_{2} x_{3}^2-q^5 t^7 x_{1} x_{3}^3-q^5 t^7 x_{2}^3 x_{3}+q^5 t^7 x_{2}^2 x_{3}^2\\&-q^5 t^7 x_{2} x_{3}^3+q^4 t^8 x_{1}^2 x_{2} x_{3}+q^4 t^8 x_{1} x_{2}^2 x_{3}+q^4 t^8 x_{1} x_{2} x_{3}^2\\&+q^6 t^5 x_{1}^2 x_{2}^2+2 q^6 t^5 x_{1}^2 x_{2} x_{3}+q^6 t^5 x_{1}^2 x_{3}^2\\&+2 q^6 t^5 x_{1} x_{2}^2 x_{3}+2 q^6 t^5 x_{1} x_{2} x_{3}^2+q^6 t^5 x_{2}^2 x_{3}^2\\&+q^5 t^6 x_{1}^3 x_{2}+q^5 t^6 x_{1}^3 x_{3}+3 q^5 t^6 x_{1}^2 x_{2}^2+q^5 t^6 x_{1}^2 x_{2} x_{3}\\&+3 q^5 t^6 x_{1}^2 x_{3}^2+q^5 t^6 x_{1} x_{2}^3+q^5 t^6 x_{1} x_{2}^2 x_{3}+q^5 t^6 x_{1} x_{2} x_{3}^2 \end{aligned}$$
$$\begin{aligned}&+q^5 t^6 x_{1} x_{3}^3+q^5 t^6 x_{2}^3 x_{3}+3 q^5 t^6 x_{2}^2 x_{3}^2+q^5 t^6 x_{2} x_{3}^3-2 q^4 t^7 x_{1}^2 x_{2}^2\\&-2 q^4 t^7 x_{1}^2 x_{3}^2-2 q^4 t^7 x_{2}^2 x_{3}^2-q^6 t^4 x_{1}^2 x_{2} x_{3}-q^6 t^4 x_{1} x_{2}^2 x_{3}\\&-q^6 t^4 x_{1} x_{2} x_{3}^2-3 q^5 t^5 x_{1}^2 x_{2}^2-4 q^5 t^5 x_{1}^2x_{2} x_{3}-3 q^5 t^5 x_{1}^2 x_{3}^2\\&-4 q^5 t^5 x_{1} x_{2}^2x_{3}-4 q^5 t^5 x_{1} x_{2} x_{3}^2-3 q^5 t^5 x_{2}^2 x_{3}^2\\&-q^4 t^6 x_{1}^3 x_{2}-q^4 t^6 x_{1}^3 x_{3}+q^4 t^6 x_{1}^2 x_{2}^2+4 q^4 t^6 x_{1}^2 x_{2} x_{3}\\&+q^4 t^6 x_{1}^2 x_{3}^2-q^4 t^6 x_{1} x_{2}^3+4 q^4 t^6 x_{1} x_{2}^2 x_{3}+4 q^4 t^6 x_{1} x_{2} x_{3}^2-q^4 t^6 x_{1} x_{3}^3\\&-q^4 t^6 x_{2}^3 x_{3}+q^4 t^6 x_{2}^2 x_{3}^2-q^4 t^6 x_{2} x_{3}^3-2 q^3 t^7 x_{1}^2 x_{2}x_{3}\\&-2 q^3 t^7 x_{1} x_{2}^2 x_{3}-2 q^3 t^7 x_{1} x_{2} x_{3}^2-2 q^5 t^4 x_{1}^2 x_{2}^2\\&+q^5 t^4 x_{1}^2 x_{2} x_{3}-2 q^5 t^4 x_{1}^2 x_{3}^2+q^5 t^4 x_{1} x_{2}^2 x_{3}+q^5 t^4 x_{1} x_{2} x_{3}^2\\&-2 q^5 t^4 x_{2}^2 x_{3}^2-2 q^4 t^5 x_{1}^3 x_{2}-2 q^4 t^5 x_{1}^3 x_{3}\\&+q^4 t^5 x_{1}^2 x_{2}^2-7 q^4 t^5 x_{1}^2 x_{2} x_{3}+q^4 t^5 x_{1}^2 x_{3}^2-2 q^4 t^5 x_{1} x_{2}^3\\&-7 q^4 t^5 x_{1} x_{2}^2 x_{3}-7 q^4 t^5 x_{1} x_{2} x_{3}^2-2 q^4 t^5 x_{1}x_{3}^3\\&-2 q^4 t^5 x_{2}^3 x_{3}+q^4 t^5 x_{2}^2 x_{3}^2-2 q^4 t^5 x_{2} x_{3}^3\\&-3 q^3 t^6 x_{1}^2 x_{2}^2-3 q^3 t^6 x_{1}^2 x_{3}^2-3 q^3 t^6 x_{2}^2 x_{3}^2\\&+q^5 t^3 x_{1}^2 x_{2} x_{3}+q^5 t^3 x_{1} x_{2}^2 x_{3}+q^5 t^3 x_{1} x_{2} x_{3}^2\\&+3 q^4 t^4 x_{1}^2 x_{2}^2-q^4 t^4 x_{1}^2 x_{2} x_{3}+3 q^4 t^4 x_{1}^2 x_{3}^2-q^4 t^4 x_{1} x_{2}^2 x_{3}\\&-q^4 t^4 x_{1} x_{2} x_{3}^2+3 q^4 t^4 x_{2}^2 x_{3}^2+q^3 t^5 x_{1}^3 x_{2}+q^3 t^5 x_{1}^3 x_{3}\\&-4 q^3 t^5 x_{1}^2 x_{2}^2+4 q^3 t^5 x_{1}^2 x_{2} x_{3}-4 q^3 t^5 x_{1}^2 x_{3}^2\\&+q^3 t^5 x_{1} x_{2}^3+4 q^3 t^5 x_{1} x_{2}^2 x_{3}+4 q^3 t^5 x_{1} x_{2} x_{3}^2\\&+q^3 t^5 x_{1} x_{3}^3+q^3 t^5 x_{2}^3 x_{3}-4 q^3 t^5 x_{2}^2 x_{3}^2+q^3 t^5 x_{2} x_{3}^3-4 q^2 t^6 x_{1}^2 x_{2} x_{3}\\&-4 q^2 t^6 x_{1} x_{2}^2 x_{3}-4 q^2 t^6 x_{1} x_{2} x_{3}^2-3 q^4 t^3 x_{1}^2 x_{2}^2\\&-q^4 t^3 x_{1}^2 x_{2} x_{3}-3 q^4 t^3 x_{1}^2 x_{3}^2-q^4 t^3 x_{1} x_{2}^2 x_{3}\\&-q^4 t^3 x_{1} x_{2} x_{3}^2-3 q^4 t^3 x_{2}^2 x_{3}^2+3 q^2 t^5 x_{1}^2 x_{2}^2\\&+q^2 t^5 x_{1}^2 x_{2} x_{3}+3 q^2 t^5 x_{1}^2 x_{3}^2+q^2 t^5 x_{1} x_{2}^2 x_{3}+q^2 t^5 x_{1} x_{2} x_{3}^2\\&+3 q^2 t^5 x_{2}^2 x_{3}^2+4 q^4 t^2 x_{1}^2 x_{2} x_{3}+4 q^4 t^2 x_{1} x_{2}^2 x_{3}+4 q^4 t^2 x_{1} x_{2} x_{3}^2\\&-q^3 t^3 x_{1}^3 x_{2}-q^3 t^3 x_{1}^3 x_{3}+4 q^3 t^3 x_{1}^2 x_{2}^2-4 q^3 t^3 x_{1}^2 x_{2} x_{3}+4 q^3 t^3 x_{1}^2 x_{3}^2\\&-q^3 t^3 x_{1} x_{2}^3-4 q^3 t^3 x_{1} x_{2}^2 x_{3}-4 q^3 t^3 x_{1} x_{2} x_{3}^2-q^3 t^3 x_{1} x_{3}^3\\&-q^3 t^3 x_{2}^3 x_{3}+4 q^3 t^3 x_{2}^2 x_{3}^2-q^3 t^3 x_{2} x_{3}^3-3 q^2 t^4 x_{1}^2 x_{2}^2\\&+q^2 t^4 x_{1}^2 x_{2} x_{3}-3 q^2 t^4 x_{1}^2 x_{3}^2+q^2 t^4 x_{1} x_{2}^2 x_{3}+q^2 t^4 x_{1} x_{2} x_{3}^2\\&-3 q^2 t^4 x_{2}^2 x_{3}^2-q t^5 x_{1}^2 x_{2} x_{3}-q t^5 x_{1} x_{2}^2 x_{3}-q t^5 x_{1} x_{2} x_{3}^2\\&+3 q^3 t^2 x_{1}^2 x_{2}^2+3 q^3 t^2 x_{1}^2 x_{3}^2+3 q^3 t^2 x_{2}^2 x_{3}^2+2 q^2 t^3 x_{1}^3 x_{2}\\&+2 q^2 t^3 x_{1}^3 x_{3}-q^2 t^3 x_{1}^2 x_{2}^2+7 q^2 t^3 x_{1}^2 x_{2} x_{3}-q^2 t^3 x_{1}^2 x_{3}^2+2 q^2 t^3 x_{1} x_{2}^3\\&+7 q^2 t^3 x_{1} x_{2}^2 x_{3}+7 q^2 t^3 x_{1} x_{2} x_{3}^2+2 q^2 t^3 x_{1} x_{3}^3+2 q^2 t^3 x_{2}^3 x_{3}-q^2 t^3 x_{2}^2 x_{3}^2\\&+2 q^2 t^3 x_{2} x_{3}^3+2 q t^4 x_{1}^2 x_{2}^2-q t^4 x_{1}^2 x_{2} x_{3}+2 q t^4 x_{1}^2 x_{3}^2-q t^4 x_{1} x_{2}^2 x_{3}\\&-q t^4 x_{1} x_{2} x_{3}^2+2 q t^4 x_{2}^2 x_{3}^2+2 q^3 t x_{1}^2 x_{2} x_{3}+2 q^3 t x_{1} x_{2}^2 x_{3}+2 q^3 t x_{1} x_{2} x_{3}^2\\&+q^2 t^2 x_{1}^3 x_{2}+q^2 t^2 x_{1}^3 x_{3}-q^2 t^2 x_{1}^2 x_{2}^2-4 q^2 t^2 x_{1}^2 x_{2} x_{3} \end{aligned}$$
$$\begin{aligned}&-q^2 t^2 x_{1}^2 x_{3}^2+q^2 t^2 x_{1} x_{2}^3-4 q^2 t^2 x_{1} x_{2}^2 x_{3}-4 q^2 t^2 x_{1} x_{2} x_{3}^2\\&+q^2 t^2 x_{1} x_{3}^3+q^2 t^2 x_{2}^3 x_{3}-q^2 t^2 x_{2}^2 x_{3}^2+q^2 t^2 x_{2} x_{3}^3\\&+3 q t^3 x_{1}^2 x_{2}^2+4 q t^3 x_{1}^2 x_{2} x_{3}+3 q t^3 x_{1}^2 x_{3}^2\\&+4 q t^3 x_{1} x_{2}^2 x_{3}+4 q t^3 x_{1} x_{2} x_{3}^2+3 q t^3 x_{2}^2 x_{3}^2+t^4 x_{1}^2 x_{2} x_{3}\\&+t^4 x_{1} x_{2}^2 x_{3}+t^4 x_{1} x_{2} x_{3}^2+2 q^2 t x_{1}^2 x_{2}^2\\&+2 q^2 t x_{1}^2 x_{3}^2+2 q^2 t x_{2}^2 x_{3}^2-q t^2 x_{1}^3 x_{2}\\&-q t^2 x_{1}^3 x_{3}-3 q t^2 x_{1}^2 x_{2}^2-q t^2 x_{1}^2 x_{2} x_{3}\\&-3 q t^2 x_{1}^2 x_{3}^2-q t^2 x_{1} x_{2}^3-q t^2 x_{1} x_{2}^2 x_{3}\\&-q t^2 x_{1} x_{2} x_{3}^2-q t^2 x_{1} x_{3}^3-q t^2 x_{2}^3 x_{3}\\&-3 q t^2 x_{2}^2 x_{3}^2-q t^2 x_{2} x_{3}^3-t^3 x_{1}^2 x_{2}^2-2 t^3 x_{1}^2 x_{2} x_{3}-t^3 x_{1}^2 x_{3}^2-2 t^3 x_{1} x_{2}^2 x_{3}\\&-2 t^3 x_{1} x_{2} x_{3}^2-t^3 x_{2}^2 x_{3}^2-q^2 x_{1}^2 x_{2} x_{3}\\&-q^2 x_{1} x_{2}^2 x_{3}-q^2 x_{1} x_{2} x_{3}^2+q t x_{1}^3 x_{2}\\&+q t x_{1}^3 x_{3}-q t x_{1}^2 x_{2}^2+q t x_{1}^2 x_{2} x_{3}-q t x_{1}^2 x_{3}^2\\&+q t x_{1} x_{2}^3+q t x_{1} x_{2}^2 x_{3}+q t x_{1} x_{2} x_{3}^2\\&+q t x_{1} x_{3}^3+q t x_{2}^3 x_{3}-q t x_{2}^2 x_{3}^2+q t x_{2} x_{3}^3\\&+t^2 x_{1}^2 x_{2}^2+t^2 x_{1}^2 x_{2} x_{3}+t^2 x_{1}^2 x_{3}^2\\&+t^2 x_{1} x_{2}^2 x_{3}+t^2 x_{1} x_{2} x_{3}^2+t^2 x_{2}^2 x_{3}^2\\&-q x_{1}^2 x_{2}^2-2 q x_{1}^2 x_{2} x_{3}-q x_{1}^2 x_{3}^2-2 q x_{1} x_{2}^2 x_{3}\\&-2 q x_{1} x_{2} x_{3}^2-q x_{2}^2 x_{3}^2+t x_{1}^2 x_{2}^2+2 t x_{1}^2 x_{2} x_{3}\\&+t x_{1}^2 x_{3}^2+2 t x_{1} x_{2}^2 x_{3}+2 t x_{1} x_{2} x_{3}^2\\&+t x_{2}^2 x_{3}^2-x_{1}^3 x_{2}-x_{1}^3 x_{3}-x_{1}^2 x_{2}^2-2 x_{1}^2 x_{2} x_{3}\\&-x_{1}^2 x_{3}^2-x_{1} x_{2}^3-2 x_{1} x_{2}^2 x_{3}-2 x_{1} x_{2} x_{3}^2\\&-x_{1} x_{3}^3-x_{2}^3 x_{3}-x_{2}^2 x_{3}^2-x_{2} x_{3}^3) + \cdots \end{aligned}$$

Notice that the series purely in w is absent because we took the smallest possible weight \(\mathbf j \).

The corresponding eigenvalues are

$$\begin{aligned} \lambda _1= & {} -q t-1-t^{-1}\\&- \frac{\mathbf{p}}{(q t+1) (q t-1)^2 t^2} (-1+t) (t+1) (-t+q)\\&\quad (t^3 q^3-q^2 t^4-t^3 q^2+t^3 q+q^2 t-t^2 q-q t+t^2+t-1) \\&+ \frac{\mathbf{w}}{t^3 q} (t^6 q^3+t^5 q^3+t^5 q^2+2 q^2 t^4+t^3 q^2+t^4 q\\&\quad +2 t^3 q+2 t^2 q+q t+t^2+t+1) \\&+\frac{\mathbf{w p}}{q^2 (q t+1) (q t-1)^2 t^5} (-t+q) (-1+t)(t+1) \\&\quad (t^9 q^7-t^{10} q^6-t^8 q^7+2 t^8 q^6-q^5 t^9+2 t^7 q^6-3 t^8 q^5-t^9 q^4\\&\quad +t^7 q^5-t^8 q^4+2 t^5 q^6+2 t^6 q^5-4 t^7 q^4+2 t^5 q^5-5 t^6 q^4\\&\quad +2 t^4 q^5-t^6 q^3+3 t^7 q^2+t^3 q^5-3 t^5 q^3+3 t^6 q^2+2 t^3 q^4\\&\quad -4 t^4 q^3+2 t^5 q^2+q t^6+t^2 q^4-2 t^3 q^3+2 q^2 t^4+3 t^5 q-t^2 q^3\\&\quad -t^3 q^2+q^3 t-4 t^2 q^2+2 t^3 q-2 q^2 t+2 t^2 q-q t-t^2-q+t) + \ldots \end{aligned}$$

and

$$\begin{aligned} \lambda _2= & {} q t+q+t^{-1}\\&- \frac{\mathbf{p}}{(q t+1) (q t-1)^2 t^2} (-1+t) (t+1) (-t+q)\\&\quad (t^4 q^3-t^3 q^3-t^2 q^3+t^3 q^2+t^2 q^2-t^3 q-q^2 t+q t+q-t) \\&- \frac{\mathbf{w}}{t^3 q} (t^6 q^3+t^5 q^3+t^4 q^3\\&\quad +t^5 q^2+2 q^2t^4+2 t^3 q^2+t^2 q^2+t^3 q+2 t^2 q+q t+t+1) \\&- \frac{\mathbf{w p}}{q^2 (q t+1) (q t-1)^2 t^5} (-1+t) (t+1) (-t+q) \\&\quad (t^9 q^7-t^{10} q^6-t^8 q^7-t^9 q^6+2 t^8 q^6-2 q^5 t^9+2 t^7 q^6-4 t^8 q^5\\&\quad +t^9 q^4-t^7 q^5-t^8 q^4+3 t^5 q^6+2 t^6 q^5-2 t^7 q^4+t^8 q^3+t^4 q^6\\&\quad +2 t^5 q^5-4 t^6 q^4+2 t^7 q^3+3 t^4 q^5-3 t^5 q^4+t^7 q^2+3 t^3 q^5\\&\quad -t^4 q^4+2 t^6 q^2-5 t^4 q^3+2 t^5 q^2-4 t^3 q^3+2 q^2 t^4+2 t^5 q\\&\quad -t^2 q^3+t^3 q^2-q^3 t-3 t^2 q^2+2 t^3 q-q^2 t+2 t^2 q-t^2-q+t) + \ldots \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroteev, P., Shakirov, S. The quantum DELL system. Lett Math Phys 110, 969–999 (2020). https://doi.org/10.1007/s11005-019-01247-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01247-y

Keywords

Mathematics Subject Classification

Navigation