Skip to main content
Log in

On a Timoshenko system with thermal coupling on both the bending moment and the shear force

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

The Timoshenko system is a very well-known model for vibrations of elastic beams, which is given by the coupling of two forces acting on the system: the shear force and the bending moment. In the non-isothermal case, that is, when the model is subject to the temperature variation, we consider the thermal effect acting on the whole system, that is, we propose a new thermoelastic Timoshenko system by coupling thermal laws on both the shear force and the bending moment under the Fourier’s law. Then, we show that such a fully thermoelastic system is exponentially stable without assuming equal wave speeds and also independent of any boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. S. Almeida Júnior, M. L. Santos and J. E. Muñoz Rivera, Stability to weakly dissipative Timoshenko systems, Math. Methods Appl. Sci. 36 (2013) 1965–1976.

    Article  MathSciNet  Google Scholar 

  2. D. S. Almeida Júnior, M. L. Santos and J. E. Muñoz Rivera, Stability to 1-D thermoelastic Timoshenko beam acting on shear force, Z. Angew. Math. Phys. 65 (2014), no. 6, 1233–1249.

    Article  MathSciNet  Google Scholar 

  3. M. S. Alves, M. A. Jorge Silva, T. F Ma and J. E. Muñoz Rivera, Invariance of decay rate with respect to boundary conditions in thermoelastic Timoshenko systems, Z. Angew. Math. Phys. (2016) 67: 70.

  4. M. S. Alves, M. A. Jorge Silva, T. F. Ma and J. E. Muñoz Rivera, Non-homogeneous thermoelastic Timoshenko systems, Bull. Braz. Math. Soc. (N.S.) 48 (2017), no. 3, 461–484.

    Article  MathSciNet  Google Scholar 

  5. F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations 194 (2003) 82–115.

    Article  MathSciNet  Google Scholar 

  6. F. Ammar-Khodja, S. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam, J. Math. Anal. Appl. 327 (2007) 525–538.

    Article  MathSciNet  Google Scholar 

  7. L. C. Cardozo, M. A. Jorge Silva, T. F. Ma, J. E. Muñoz Rivera, Stability of Timoshenko systems with thermal coupling on the bending moment, Mathematische Nachrichten, 2019. (accepted for publication - to appear)

  8. M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcão Nascimento, I. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys. 65 (2014) 1189–1206.

    Article  MathSciNet  Google Scholar 

  9. M. Conti, F. Dell’Oro, V. Pata, Timoshenko systems with fading memory, Dyn. Partial Differ. Equ. 10 (2013) 367–377.

    Article  MathSciNet  Google Scholar 

  10. C. M. Dafermos, On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity, Arch. Rat. Mech. Anal. 29 (1968), 241–271.

    Article  MathSciNet  Google Scholar 

  11. F. Dell’Oro, Asymptotic stability of thermoelastic systems of Bresse type, J. Differential Equations 258 (2015) 3902–3927

    Article  MathSciNet  Google Scholar 

  12. F. Dell’Oro and V. Pata, On the stability of Timoshenko systems with Gurtin–Pipkin thermal law, J. Differential Equations 257 (2014) 523–548.

    Article  MathSciNet  Google Scholar 

  13. A. D. Drozdov, V. B. Kolmanovskii, Stability in Viscoelasticity, Amsterdam: North-Holland, 1994.

    MATH  Google Scholar 

  14. K. Engel and R. Nagel, A short Course on Operator Semigroups. Springer, New York, 2006.

    MATH  Google Scholar 

  15. L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math. 75 (2010), no. 6, 881–904.

    Article  MathSciNet  Google Scholar 

  16. L. H. Fatori, J. E. Muñoz Rivera and R. N. Monteiro, Energy decay to Timoshenko’s system with thermoelasticity of type III, Asymptot. Anal. 86 (2014) 227–247.

    Article  MathSciNet  Google Scholar 

  17. H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal. 194 (2009) 221–251.

    Article  MathSciNet  Google Scholar 

  18. L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc. 236 (1978) 385–394.

    Article  MathSciNet  Google Scholar 

  19. A. Guesmia and S. A Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Methods Appl. Sci. 32 (2009) 2102–2122.

    Article  MathSciNet  Google Scholar 

  20. A. Guesmia, S. A. Messaoudi and A. Wehbe, Uniform decay in mildly damped Timoshenko systems with non-equal wave speed propagation, Dynam. Systems Appl. 21 (2012) 133–146.

    MathSciNet  MATH  Google Scholar 

  21. J. E. Lagnese, G. Leugering, E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci. 16 (1993), no. 5, 327–358.

    Article  MathSciNet  Google Scholar 

  22. J. E. Lagnese, G. Leugering, E. J. P. G. Schmidt, Modeling, analysis and control of dynamic elastic multi-link structures. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1994.

  23. J. E. Lagnese and J. L. Lions, Modelling, Analysis and Control of Thin Plates, in: Recherches en Mathématiques Appliquées, vol. 6, Mason, Paris, 1988.

  24. F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations 1 (1985) 43–56.

    MathSciNet  MATH  Google Scholar 

  25. J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim. 25 (1987) 1417–1429.

    Article  MathSciNet  Google Scholar 

  26. Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys. 60 (2009), no. 1, 54–69.

    Article  MathSciNet  Google Scholar 

  27. Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton, 1999.

    MATH  Google Scholar 

  28. N. Mori, J. Xu, S. Kawashima, Global existence and optimal decay rates for the Timoshenko system: the case of equal wave speeds, J. Differential Equations 258 (2015) 1494–1518.

    Article  MathSciNet  Google Scholar 

  29. J. E. Muñoz Rivera, Energy decay rate in linear thermoelasticity, Funkcial. Ekvac. 35 (1992), 19–30.

  30. J. E. Muñoz Rivera and A. I. Ávila, Rates of decay to non homogeneous Timoshenko model with tip body, J. Differential Equations 258 (2015), no. 10, 3468–3490.

    Article  MathSciNet  Google Scholar 

  31. J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems – global existence and exponential stability, J. Math. Anal. Appl. 276 (2002) 248–278.

    Article  MathSciNet  Google Scholar 

  32. J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Contin. Dyn. Syst. B 9 (2003) 1625–1639.

    Article  MathSciNet  Google Scholar 

  33. P. Olsson and G. Kristensson, Wave splitting of the Timoshenko beam equation in the time domain, Z. Angew. Math. Phys. 45 (1994) 866-881.

    Article  MathSciNet  Google Scholar 

  34. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  35. J. Prüss, On the spectrum of \(C_0\)-semigroups, Trans. Amer. Math. Soc. 284 (1984) 847–857.

    Article  MathSciNet  Google Scholar 

  36. J. Prüss, Evolutionary integral equations and applications. Monographs in Mathematics, 87. Birkhäuser Verlag, Basel, 1993.

  37. R. Quintanilla and R. Racke, Stability for thermoelastic plates with two temperatures, Discrete Contin. Dyn. Syst. 37 (2017), no. 12, 6333–6352.

    Article  MathSciNet  Google Scholar 

  38. C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett. 18 (2005) 535–541.

    Article  MathSciNet  Google Scholar 

  39. B. Said-Houari and A. Kasimov, Damping by heat conduction in the Timoshenko system: Fourier and Cattaneo are the same, J. Differential Equations 255 (2013) 611–632.

    Article  MathSciNet  Google Scholar 

  40. M. L. Santos, D. S. Almeida Júnior, J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound, J. Differential Equations 253 (2012) 2715–2733.

    Article  MathSciNet  Google Scholar 

  41. M. L. Santos, D. S. Almeida Júnior, J. E. Muñoz Rivera, Bresse system with Fourier law on shear force, Advances in Differential Equations 21 (2016), 55–84.

  42. M. L. Santos, D. S. Almeida Júnior, J. H. Rodrigues and F. A. Falcão Nascimento, Decay rates for Timoshenko system with nonlinear arbitrary localized damping, Differential and Integral Equations 27 (2014) 1–26.

  43. M. L. Santos, Bresse System in Thermoelasticity of Type III Acting on Shear Force, J. Elast. (2016) 125: 185.

    Article  MathSciNet  Google Scholar 

  44. M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity, Arch. Rat. Mech. Anal. 76 (1981), 97–133.

    Article  MathSciNet  Google Scholar 

  45. A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 731–734.

    Article  MathSciNet  Google Scholar 

  46. A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam, Nonlinear Anal. Real World Appl. 10 (2009) 1016–1020.

    Article  MathSciNet  Google Scholar 

  47. A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations 29 (2003) 14 pp.

  48. S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, Series 6, 41, issue 245, (1921) 744–746.

  49. S. P. Timoshenko, Vibration Problems in Engineering, Van Nostrand, New York, 1955.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to: (i) the anonymous referee for raising questions on “temperatures”, which made the authors improve (and correct) the previous version of the article up to the present one; (ii) the professors Jaime E. Muñoz Rivera, Ramon Quintanilla, and Reinhard Racke, for all helpful discussions and careful considerations on the modeling in thermoelasticity; (iii) the collaboration of Sandro B. Pinheiro (currently at the State University of Maringá, Brazil, as a Ph.D. student) for kindly dedicating time to draw Pictures 1 and 2.

Funding

A. H. Caixeta has been partially supported by the Brazilian Agency CAPES within the project “PNPD - UEL/Matemática Aplicada e Computacional” Scholarship Number 1622327. M. A. Jorge Silva has been partially supported by the CNPq Grant 441414/2014-1 and Fundação Araucária Grant 066/2019. Research of D. S. Almeida Júnior has been partially supported by the CNPq Grants 458866/2014-8 and 310423/2016-3, and PNPD/CAPES/INCTMAT/LNCC Grant 88887.351763/2019-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Jorge Silva.

Additional information

Dedicated to Professor Jaime E. Muñoz Rivera on the occasion of his 60th birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, M.O., Caixeta, A.H., Jorge Silva, M.A. et al. On a Timoshenko system with thermal coupling on both the bending moment and the shear force. J. Evol. Equ. 20, 295–320 (2020). https://doi.org/10.1007/s00028-019-00522-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00522-8

Mathematics Subject Classification

Keywords

Navigation