Skip to main content
Log in

Bi-Laplacians on graphs and networks

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We study the differential operator \(A=\frac{d^4}{dx^4}\) acting on a connected network \(\mathcal {G}\) along with \(\mathcal L^2\), the square of the discrete Laplacian acting on a connected discrete graph \(\mathsf {G}\). For both operators, we discuss well-posedness of the associated linear parabolic problems

$$\begin{aligned} \frac{\partial u}{\partial t}=-Au,\qquad \frac{df}{dt}=-{\mathcal {L}}^2 f, \end{aligned}$$

on \(L^p(\mathcal {G})\) or \(\ell ^p(\mathsf {V})\), respectively, for \(1\le p\le \infty \). In view of the well-known lack of parabolic maximum principle for all elliptic differential operators of order 2N for \(N>1\), our most surprising finding is that after some transient time, the parabolic equations driven by \(-A\) may display Markovian features, depending on the imposed transmission conditions in the vertices. Analogous results seem to be unknown in the case of general domains and even bounded intervals. Our analysis is based on a detailed study of bi-harmonic functions complemented by simple combinatorial arguments. We elaborate on analogous issues for the discrete bi-Laplacian; a characterization of complete graphs in terms of the Markovian property of the semigroup generated by \(-{\mathcal {L}}^2\) is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. W. Arendt, C.J.K. Batty, M. Hieber, and F. Neubrander. Vector-Valued Laplace Transforms and Cauchy Problems, volume 96 of Monographs in Mathematics. Birkhäuser, Basel, 2001.

    MATH  Google Scholar 

  2. T. Ando and K. Nishio. Positive selfadjoint extensions of positive symmetric operators. Tokohu Math. J., 22:65–75, 1970.

    MathSciNet  MATH  Google Scholar 

  3. W. Arendt. Semigroups and evolution equations: Functional calculus, regularity and kernel estimates. In C.M. Dafermos and E. Feireisl, editors, Handbook of Differential Equations: Evolutionary Equations – Vol. 1. North Holland, Amsterdam, 2004.

  4. W. Arendt. Heat Kernels – Manuscript of the \(9^{\rm th}\) Internet Seminar, 2006. (freely available at http://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.020/arendt/downloads/internetseminar.pdf).

  5. W. Arendt and T. ter Elst. The Dirichlet-to-Neumann operator on \( C(\partial \Omega )\). arXiv:1707.05556, 2017.

  6. A. Beurling and J. Deny. Dirichlet spaces. Proc. Natl. Acad. Sci. USA, 45:208–215, 1959.

    MATH  Google Scholar 

  7. J. von Below. A characteristic equation associated with an eigenvalue problem on \(c^2\)-networks. Lin. Algebra Appl., 71:309–325, 1985.

    MATH  Google Scholar 

  8. G. Berkolaiko and P. Kuchment. Introduction to Quantum Graphs, volume 186 of Math. Surveys and Monographs. Amer. Math. Soc., Providence, RI, 2013.

  9. G. Berkolaiko, J.B. Kennedy, P. Kurasov, and D. Mugnolo. Surgery principles for the spectral analysis of quantum graphs. Trans. Amer. Math. Soc., (to appear).

  10. A.V. Borovskikh and K.P. Lazarev. Fourth-order differential equations on geometric graphs. J. Math. Sci., 119:719–738, 2004.

    MathSciNet  MATH  Google Scholar 

  11. S. Bonaccorsi and S. Mazzucchi. High order heat-type equations and random walks on the complex plane. Stochastic Process. Appl., 125:797–818, 2015.

    MathSciNet  MATH  Google Scholar 

  12. G. Chen, M.C. Delfour, A.M. Krall, and G. Payre. Modeling, stabilization and control of serially connected beams. SIAM J. Control Opt., 25:526–546, 1987.

    MathSciNet  MATH  Google Scholar 

  13. R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann., 100:32–74, 1928.

    MathSciNet  MATH  Google Scholar 

  14. S. Cardanobile and D. Mugnolo. Parabolic systems with coupled boundary conditions. J. Differ. Equ., 247:1229–1248, 2009.

    MathSciNet  MATH  Google Scholar 

  15. E.B. Davies. Long time asymptotics of fourth order parabolic equations. Journal d’Analyse Mathématique, 67:323–345, 1995.

    MathSciNet  MATH  Google Scholar 

  16. E.B. Davies. Uniformly elliptic operators with measurable coefficients. J. Funct. Anal., 132:141–169, 1995.

    MathSciNet  MATH  Google Scholar 

  17. E.B. Davies. Linear Operators And Their Spectra. Cambridge Univ. Press, Cambridge, 2007.

    MATH  Google Scholar 

  18. D. Daners, J. Glück, and J.B. Kennedy. Eventually and asymptotically positive semigroups on Banach lattices. J. Differ. Equ., 261:2607–2649, 2016.

    MathSciNet  MATH  Google Scholar 

  19. D. Daners, J. Glück, and J.B. Kennedy. Eventually positive semigroups of linear operators. J. Math. Anal. Appl., 433:1561–1593, 2016.

    MathSciNet  MATH  Google Scholar 

  20. R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 2005.

  21. R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2. Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  22. B. Dekoninck and S. Nicaise. Control of networks of Euler-Bernoulli beams. ESAIM: Control, Optimisation and Calculus of Variations, 4:57–81, 1999.

    MathSciNet  MATH  Google Scholar 

  23. B. Dekoninck and S. Nicaise. The eigenvalue problem for networks of beams. Lin. Algebra Appl., 314:165–189, 2000.

    MathSciNet  MATH  Google Scholar 

  24. R. Dáger and E. Zuazua. Wave propagation, observation and control in 1-d flexible multi-structures, volume 50 of Mathém. & Appl. Springer-Verlag, Berlin, 2006.

  25. K.-J. Engel. On singular perturbations of second order Cauchy problems. Pacific J. Math., 152:79–91, 1992.

    MathSciNet  MATH  Google Scholar 

  26. A. Ferrero, F. Gazzola, and H.-C. Grunau. Decay and eventual local positivity for biharmonic parabolic equations. Disc. Cont. Dyn. Syst., 21:1129–1157, 2008.

    MathSciNet  MATH  Google Scholar 

  27. fedja (https://mathoverflow.net/users/1131/fedja). An elementary inequality for graph Laplacians. MathOverflow. https://mathoverflow.net/q/287765(version: 2017-12-05).

  28. M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23:298–305, 1973.

    MathSciNet  MATH  Google Scholar 

  29. M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet forms and symmetric Markov processes, volume 19 of Studies in Math. de Gruyter, Berlin, 2010.

  30. T. Funaki. Probabilistic construction of the solution of some higher order parabolic differential equation. Proc. Japan Acad., Ser. A, 55:176–179, 1979.

    MathSciNet  MATH  Google Scholar 

  31. F. Gazzola and H.-C. Grunau. Eventual local positivity for a biharmonic heat equation in \(\mathbb{R}^n\). Disc. Cont. Dyn. Syst. S, (83-87):265–266, 2008.

    MATH  Google Scholar 

  32. R.J. Griego and R. Hersh. Random evolutions, Markov chains, and systems of partial differential equations. Proc. Natl. Acad. Sci. USA, 62:305–308, 1969.

    MathSciNet  MATH  Google Scholar 

  33. S. Gnutzmann and F. Haake. Positivity violation and initial slips in open systems. Z. Phys. B, 101:263–273, 1996.

    Google Scholar 

  34. L. Giacomelli, H. Knüpfer, and F. Otto. Smooth zero-contact-angle solutions to a thin-film equation around the steady state. J. Differ. Equ., 245:1454–1506, 2008.

    MathSciNet  MATH  Google Scholar 

  35. J. Glück. Invariant Sets and Long Time Behaviour of Operator Semigroups. PhD thesis, Universität Ulm, 2016.

  36. J. Gasch and L. Maligranda. On vector-valued inequalities of the marcinkiewicz-zygmund, herz and krivine type. Math. Nachr., 167:95–129, 1994.

    MathSciNet  MATH  Google Scholar 

  37. F. Gregorio and S. Mildner. Fourth-order Schrödinger type operator with singular potentials. Arch. Math, 107:285–294, 2016.

    MathSciNet  MATH  Google Scholar 

  38. V.A. Galaktionov, E.L. Mitidieri, and S.I. Pohozaev. Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations. CRC Press, Boca Raton, FL, 2014.

    MATH  Google Scholar 

  39. B. Gramsch. Zum Einbettungssatz von Rellich bei Sobolevräumen. Math. Z., 106:81–87, 1968.

    MathSciNet  MATH  Google Scholar 

  40. S.M. Han, H. Benaroya, and T. Wei. Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib., 225:935–988, 1999.

    MATH  Google Scholar 

  41. O. Holtz and M. Karow. Real and complex operator norms. arXiv:math/0512608v1, 2005.

  42. P.G. Hufton, Y.T. Lin, and T. Galla. Model reduction methods for classical stochastic systems with fast-switching environments: reduced master equations, stochastic differential equations, and applications. arXiv:1803.02941, 2018.

  43. K.J. Hochberg. A signed measure on path space related to Wiener measure. Ann. Probab., 6:433–458, 1978.

    MathSciNet  MATH  Google Scholar 

  44. E. Hölder. Entwicklungssätze aus der Theorie der zweiten Variation – Allgemeine Randbedingungen. Acta Math., 70:193–242, 1939.

    MathSciNet  MATH  Google Scholar 

  45. T. Kato. On the semi-groups generated by Kolmogoroff’s differential equations. J. Math. Soc. Jap., 6:1–15, 1954.

    MathSciNet  MATH  Google Scholar 

  46. J.B. Kennedy, P. Kurasov, G. Malenová, and D. Mugnolo. On the spectral gap of a quantum graph. Ann. Henri Poincaré, 17:2439–2473, 2016.

    MathSciNet  MATH  Google Scholar 

  47. J.-C. Kiik, P. Kurasov, and M. Usman. On vertex conditions for elastic systems. Phys. Lett. A, 379:1871–1876, 2015.

    MathSciNet  MATH  Google Scholar 

  48. R.V. Kohn and F. Otto. Upper bounds on coarsening rates. Commun. Math. Phys., 229:375–395, 2002.

    MathSciNet  MATH  Google Scholar 

  49. M.G. Krein. The theory of self-adjoint extensions of semi-bounded hermitian transformations and its applications. I. Mat. Sbornik, 20:431–495, 1947.

    MathSciNet  MATH  Google Scholar 

  50. V.J. Krylov. Some properties of the distribution corresponding to the equation \(\partial u/\partial t=(-1)^{q+1}\partial ^{2q}u/\partial x^{2q}\). 1:760–763, 1960.

  51. T. Kottos and U. Smilansky. Quantum chaos on graphs. Phys. Rev. Lett., 79:4794–4797, 1997.

    Google Scholar 

  52. V. Kostrykin and R. Schrader. Kirchhoff’s rule for quantum wires. J. Phys. A, 32:595–630, 1999.

    MathSciNet  MATH  Google Scholar 

  53. P. Kuchment. Quantum graphs I: Some basic structures. Waves Random Media, 14:107–128, 2004.

    MathSciNet  MATH  Google Scholar 

  54. J.E. Lagnese, G. Leugering, and E.J.P.G. Schmidt. Modelling and controllability of networks of thin beams. In System Modelling and Optimization, pages 467–480. Springer, 1992.

  55. J.E. Lagnese, G. Leugering, and E.J.P.G. Schmidt. Modelling of dynamic networks of thin thermoelastic beams. Math. Meth. Appl. Sci., 16:327–358, 1993.

    MathSciNet  MATH  Google Scholar 

  56. J.E. Lagnese, G. Leugering, and E.J.P.G. Schmidt. Modeling, Analysis, and Control of Dynamic Elastic Multi-Link Structures. Systems and Control: Foundations and Applications. Birkhäuser, Basel, 1994.

  57. R.S. Laugesen and M.C. Pugh. Linear stability of steady states for thin film and Cahn-Hilliard type equations. Arch. Ration. Mech. Anal., 154:3–51, 2000.

    MathSciNet  MATH  Google Scholar 

  58. G. Lumer. Connecting of local operators and evolution equations on networks. In F. Hirsch, editor, Potential Theory (Proc. Copenhagen 1979), pages 230–243, Berlin, 1980. Springer-Verlag.

    Google Scholar 

  59. D. Mugnolo and R. Nittka. Properties of representations of operators acting between spaces of vector-valued functions. Positivity, 15:135–154, 2011.

    MathSciNet  MATH  Google Scholar 

  60. B. Mohar. The spectrum of an infinite graph. Lin. Algebra Appl., 48:245–256, 1982.

    MathSciNet  MATH  Google Scholar 

  61. A.H. Mueller, A.I. Shoshi, and S.M.H. Wong. Extension of the JIMWLK equation in the low gluon density region. Nuclear Phys. B, 715:440–460, 2005.

    Google Scholar 

  62. D. Mugnolo. Gaussian estimates for a heat equation on a network. Networks Het. Media, 2:55–79, 2007.

    MathSciNet  MATH  Google Scholar 

  63. D. Mugnolo. Parabolic theory of the discrete \(p\)-Laplace operator. Nonlinear Anal., Theory Methods Appl., 87:33–60, 2013.

  64. D. Mugnolo. Semigroup Methods for Evolution Equations on Networks. Underst. Compl. Syst. Springer-Verlag, Berlin, 2014.

    MATH  Google Scholar 

  65. D. Mugnolo. Some remarks on the Krein-von Neumann extension of different Laplacians. In J. Banasiak, A. Bobrowski, and M. Lachowicz, editors, Semigroups of Operators-Theory and Applications, Proc. Math. & Stat., New York, 2015. Springer-Verlag.

  66. A. Manavi, H. Vogt, and J. Voigt. Domination of semigroups associated with sectorial forms. J. Oper. Theory, 54:9–25, 2005.

    MathSciNet  MATH  Google Scholar 

  67. R. Nagel, editor. One-Parameter Semigroups of Positive Operators, volume 1184 of Lect. Notes Math. Springer-Verlag, Berlin, 1986.

  68. S. Nicaise. Problémes de Cauchy posés en norme uniforme sur les espaces ramifiés élémentaires. C.R. Acad. Sc. Paris Sér. A, 303:443–446, 1986.

  69. S. Nicaise. Spectre des réseaux topologiques finis. Bull. Sci. Math., II. Sér., 111:401–413, 1987.

  70. R. Nittka. Projections onto convex sets and \(L^p\)-quasi-contractivity of semigroups. Arch. Math., 98:341–353, 2012.

    MathSciNet  MATH  Google Scholar 

  71. E.M. Ouhabaz. Analysis of Heat Equations on Domains, volume 30 of Lond. Math. Soc. Monograph Series. Princeton Univ. Press, Princeton, NJ, 2005.

  72. F. Rellich. Halbbeschränkte Differentialoperatoren höherer Ordnung. In Proc. Int. Congress of Mathematicians (Amsterdam 1954), volume 3, pages 243–250, Amsterdam, 1954. North-Holland.

  73. J.-P. Roth. Spectre du laplacien sur un graphe. C. R. Acad. Sci. Paris Sér. I Math., 296:793–795, 1983.

  74. K. Schmüdgen. Unbounded Self-adjoint Operators on Hilbert Space, volume 265 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 2012.

  75. A. Suárez, R. Silbey, and I. Oppenheim. Memory effects in the relaxation of quantum open systems. J. Chem. Phys., 97:5101–5107, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delio Mugnolo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The second author has been partially supported by the Center for Interdisciplinary Research (ZiF) in Bielefeld, Germany, within the framework of the cooperation group on “Discrete and continuous models in the theory of networks”; and by the Deutsche Forschungsgemeinschaft (Grant 397230547).

The authors would like to thank the anonymous referee for careful reading and for many useful suggestions. The authors are grateful to Jochen Glück (Ulm) for countless illuminating discussions.

Appendix

Appendix

We argue that in the context of parabolic problems associated with different realizations of the bi-Laplacian, eventual positivity and its relaxation, asymptotic positivity are more appropriate notions: in the context of operators on general Banach lattices, they have been thoroughly discussed in [18, 19]. For the sake of self-containedness, let us present a reminder of the most relevant results obtained so far in this area.

Recall that if X is a \(\sigma \)-finite measure space, then \(L^2(X)\) is a Hilbert lattice [67]; if we denote its positive cone by \(L^2(X)_+\), then for all \(u\in L^2(X)_+\) the principal ideal generated by u is the set

$$\begin{aligned} L^2(X)_u:=\{f\in L^2(X):\exists c>0:|f|\le cu\}. \end{aligned}$$

We write \(f\gg _u 0\) if f is real and there exists \(\epsilon >0\) such that \(f\ge \epsilon u\). Observe that if \(f>0\) a.e., then \(L^2(X)_u\) is dense in \(L^2(X)\), i.e., u is a quasi-interior point of \(L^2(X)_+\) in the language of Banach lattice theory; we can thus formulate the above-mentioned results as follows.

Definition 7.1

Let X be a \(\sigma \)-finite measure space and \(L^2(X)_+\) be the positive cone of the Hilbert lattice \(L^2(X)\). A strongly continuous semigroup \((T(t))_{t\ge 0}\) is said to be

  • individually asymptotically positive if

    $$\begin{aligned} f\ge 0\Rightarrow \lim _{t\rightarrow \infty }\text {dist}\, (e^{-ts(-A)}T(t)f,L^2(X)_+)=0, \end{aligned}$$

    provided the spectral bound \(s(-A)\) of its generator \(-A\) is finite.

  • uniformly eventually strongly positive with respect to \(u\in L^2(X)_+\) if

    $$\begin{aligned} \exists t_0>0\hbox { s.t.}\quad f\ge 0,\ f\ne 0 \Rightarrow T(t)f\gg _u 0\quad \hbox {for all }t\ge t_0. \end{aligned}$$

If X has finite measure and thus u can be taken to be the constant function \(\mathbf{1}\), then \(f\gg _u 0\) is equivalent to \(f\gg 0\) and so uniform eventual strong positivity with respect to\(\mathbf{1}\) is nothing but eventual irreducibility, a rather strong property. At the other end of the spectrum, individual asymptotic positivity seems to be the weakest conceivable condition that still gives a scintilla of positivity to a semigroup.

Let us recall the following corollaries of [35, Thm. 10.2.1] and [19, Thm. 8.3].

Proposition 7.2

Let X be a \(\sigma \)-finite measure space and \((T(t))_{t\ge 0}\) be a strongly continuous semigroup on the complex Hilbert lattice \(L^2(X)\) with self-adjoint generator \(-A\). Assume that \(s(-A)>-\infty \), that \((e^{-t(A+s(-A))})_{t\ge 0}\) is bounded, and that \(s(-A)\) is a pole of the resolvent.

Then, \((T(t))_{t\ge 0}\) is individually asymptotically positive if and only if \(s(-A)\) is a dominant spectral value of A and the associated spectral projection P is positive.

Proposition 7.3

Let X be a \(\sigma \)-finite measure space and \((T(t))_{t\ge 0}\) be a real, strongly continuous semigroup on the complex Hilbert lattice \(L^2(X)\) with self-adjoint generator \(-A\). Let \(u>0\) a.e. and assume that \(\bigcap _{k=1}^\infty D(A^k)\subset L^2(X)_u\).

Then, \((T(t))_{t\ge 0}\) is uniformly eventually strongly positive with respect to u if and only if the spectral bound \(s(-A)\) is a simple eigenvalue and the associated eigenspace contains a vector v such that \(v\gg _u 0\).

It is remarkable that under the assumption of Proposition 7.3, the semigroup is necessarily of trace class and hence, its generator has purely point spectrum, whereas Proposition 7.2 may apply also in the case of a generator whose spectrum is not purely discrete, but which does have a dominant eigenvalue.

We can deduce the following result for semigroups associated with forms from the Beurling–Deny criteria.

Corollary 7.4

Let X be a finite measure space and a be a closed symmetric form on \(L^2(X)\); denote by A the associated operator. Then, the following assertions hold.

  1. (1)

    \((e^{-tA})_{t\ge 0}\) is individually asymptotically positive if and only if \(s(-A)\) is a dominant spectral value of \(-A\) and the associated spectral projection is positive.

  2. (2)

    Let additionally \(D(a)\subset L^\infty (X)\) and \({{\,\mathrm{Re}\,}}u\in D(a)\) and \(a({{\,\mathrm{Re}\,}}u, {{\,\mathrm{Im}\,}}u)\in \mathbb {R}\) for all \(u\in D(a)\). Then, \((e^{-tA})_{t\ge 0}\) is eventually irreducible if and only if the spectral bound \(s(-A)\) is a simple eigenvalue and the associated eigenspace contains a vector v such that \(v\gg 0\).

In the same spirit one may ask whether a given semigroup is eventually\(L^\infty \)-contractive. This issue was not investigated in [18, 19] but an answer can be given in a simple case that covers, in particular, finite graphs and networks.

Our result seems to be of independent interest. It has been observed by the second author together with Jochen Glück (Ulm).

Proposition 7.5

Let X be a finite measure space and A a self-adjoint operator with compact resolvent on \(L^2(X)\). Let 0 be the spectral bound of A, and let the associated eigenspace \(E_0\) be a one-dimensional space spanned by \(\mathbf 1\). Also assume that \(\bigcap _{k\in {\mathbb {N}}}D(A^k)\hookrightarrow L^\infty (X)\). Then, the semigroup generated by A is uniformly eventually sub-Markovian, i.e., uniformly eventually positive and uniformly eventually \(L^\infty \)-contractive.

Proof

First of all, let us observe that the eigenprojector onto \(E_0\), which is the rank-one operator

$$\begin{aligned} P:f\mapsto \frac{1}{|X|}\int _X |f|\ {\hbox {d}}x \end{aligned}$$

is also a positive, bounded linear operator on \(L^\infty (X)\) with norm 1. It follows from Proposition 7.3 that the semigroup is uniformly eventually strongly positive—say it is positive for all \(t>t_0\).

Let now \(t>t_0\) and hence \(e^{tA}\) be positive: in order to show that \(e^{tA}\) is \(L^\infty \)-contractive and hence sub-Markovian, it suffices to check that \(e^{t_0 A}{} \mathbf{1}= \mathbf{1}\), i.e., \(A\mathbf{1}=0\). This holds by assumption. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregorio, F., Mugnolo, D. Bi-Laplacians on graphs and networks. J. Evol. Equ. 20, 191–232 (2020). https://doi.org/10.1007/s00028-019-00523-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00523-7

Keywords

Mathematics Subject Classification

Navigation