Skip to main content
Log in

Adaptive Stabilization of a Kirchhoff Moving String

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, the adaptive stabilization of a nonlinear moving string of “Kirchhoff” type with high gain adaptive output feedback type is investigated. The model that we have adopted is more general than the one adopted in the previous studies. The concept of this type of control allows the system to be dissipative. We show that the gain function is bounded and then we prove under this result that the system is exponentially stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abrate S. Vibration of belts and belt drives. Mech Mach Theory 1992;27:645–659.

    Article  Google Scholar 

  2. Bapat VA, Srinivasan P. Nonlinear transverse oscillations in traveling strings by the method of harmonic balance. J Appl Mech 1967;34(3):775–777.

    Article  Google Scholar 

  3. Carrier GF. On the nonlinear vibration problem of the elastic string. Q Appl Math 1965;3:157–165.

    Article  Google Scholar 

  4. Chen LQ, Zhao W-J. The energetics and the stability of axially moving Kirchhoff strings (L). J Acoust Soc Am 2005;117(1):55–88.

    Article  Google Scholar 

  5. Chung CH, Tan CA. Active vibration control of the axially moving string by wave cancellation. J Vib Acoust 1995;117:49–55.

    Article  Google Scholar 

  6. Dahleh M, Hopkins W Jr. Adaptive stabilization of single-input single-output delay systems. IEEE Trans Automat Control 1986;31:577–579.

    Article  MathSciNet  Google Scholar 

  7. Fung RF, Tseng Cc. Boundary control of an axially moving string via Lyapunov method. J Dyn Syst Meas Control 1999;121:105–110.

    Article  Google Scholar 

  8. Fung FR, Wu JW, Wu SL. Stabilization of an axially moving string by nonlinear boundary feedback. ASME J Dyn Syst Meas Control 1999;121:117–121.

    Article  Google Scholar 

  9. Fung RF, Wu JW, Wu SL. Exponential stabilization of an axially moving string by linear boundary feedback. Automatica 1999;35(1):177–181.

    Article  MathSciNet  Google Scholar 

  10. Guo B-Z, Guo W. Adaptive stabilization for a Kirchhoff-type nonlinear beam under boundary output feedback control. Nonlinear Anal 2007;66:427–441.

    Article  MathSciNet  Google Scholar 

  11. Guo BZ, Luo ZH. Initial boundary value problem and exponential decay for a flexible-beam vibration with gain adaptive direct strain feedback control. Nonlinear Anal 1996;27:353–365.

    Article  MathSciNet  Google Scholar 

  12. Special Issue. Simple and robust adaptive control. Int J Adapt Control Signal Process 2014;28(7-8):563–763.

    Article  MathSciNet  Google Scholar 

  13. Kang YH, Park JY, Kim JA. A memory type boundary stabilization for an Euler-Bernoulli beam under output feedback control. J Korean Math Soc 2012;49(5): 947–964.

    Article  MathSciNet  Google Scholar 

  14. Kim D, Kang YH, Lee JB, Ko GR, Jung IH. Stabilization of a nonlinear Kirchhoff equation by boundary feedback control. J Eng Math 2012;77(1): 197–209.

    Article  MathSciNet  Google Scholar 

  15. Kobayashi T. Adaptive stabilization of infinite-dimensional semilinear second-order systems. IMA J Math Control Inform 2003;20:137–152.

    Article  MathSciNet  Google Scholar 

  16. Lee SY, Mote CD. Vibration control of an axially moving string by boundary control. J Dyn Syst Meas Control 1996;118:66–74.

    Article  Google Scholar 

  17. Kelleche A, Tatar N-e, Khemmoudj A. Uniform stabilization of an axially moving Kirchhoff string by a boundary control of memory type. J Dyn Control Syst 2016; 23(2):237–247.

    Article  MathSciNet  Google Scholar 

  18. Li T, Hou Z. Exponential stabilization of an axially moving string with geometrical nonlinearity by linear boundary feedback. J Sound Vib 2006;296:86–70.

    MathSciNet  MATH  Google Scholar 

  19. Logemann H, Zwart H. Some remarks on adaptive stabilization of infinite-dimensional systems. Syst Control Lett 1991;16:199–207.

    Article  MathSciNet  Google Scholar 

  20. Park JY, Kang YH, Kim JA. Existence and exponential stability for an Euler-Bernoulli beam equation with memory and boundary output feedback control term. Acta Appl Math 2008;104:287–301.

    Article  MathSciNet  Google Scholar 

  21. Reynolds O, Vol. 3. Papers on mechanical and physical studies, The sub-Mechanics of the universe. Cambridge: Cambridge University Press; 1903.

    Google Scholar 

  22. Shahruz SM. Boundary control of the axially moving Kirchhoff string. Automatica 1998;34(10):1273–1277.

    Article  Google Scholar 

  23. Wickert JA, Mote CD. Classical vibration analysis of axially moving continua. J Appl Mech 1990;57:738–744.

    Article  Google Scholar 

  24. Wickert JA, Mote CD. Current research on the vibration and stability of axially-moving materials. Shock Vib Dig. 1998;(20)(5):3–13.

    Article  Google Scholar 

  25. Yang KJ, Hong KS, Matsuno F. The rate of change of an energy functional for axially moving continua. IFAC Proc 2005;38(1):610–615.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkarim Kelleche.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelleche, A., Tatar, Ne. Adaptive Stabilization of a Kirchhoff Moving String. J Dyn Control Syst 26, 255–263 (2020). https://doi.org/10.1007/s10883-019-09453-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-019-09453-6

Keywords

Mathematics Subject Classification (2010)

Navigation