Skip to main content
Log in

Simulation of radiation field inside interplanetary spacecraft

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

A simulation of the radiation field inside a habitable module (a diameter of 6 m and length of 12 m) of a spacecraft generated by isotropic Galactic Cosmic Radiation (GCR) in deep interplanetary space is carried out for minimum and maximum solar activity using the FLUKA code. Protons, alpha-particles, deuterons, \(^{\mathrm {3}}\)He, and nuclei with \({Z} > 2\) are considered as primary GCR irradiating the spacecraft isotropically. The following particles are included in FLUKA radiation transport through the module shell (\(15\hbox { g/cm}^{\mathrm {2}}\) of Al): protons, neutrons, \(\gamma \)-rays, electrons, \(\pi ^{\mathrm {\pm }}\)-mesons, \(\mu ^{\mathrm {\pm }}\)-mesons d, t, and nuclei from He to Ni. The inner particle spectra are needed to assess the astronaut’s radiation risk in a long-term interplanetary mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam Gh., Bashashin M., Belyakov D., Kirakosyan M., Matveev M., Podgainy D., Sapozhnikova T., Streltsova O., Torosyan Sh., Vala M., Valova L., Vorontsov A., Zaikina T., Zemlyanaya E., Zuev M. 2018, ITecosystem of the HybriLIT heterogeneous platform for high performance computing and training of ITspecialists, Selected Papers of the 8th International Conference on “Distributed Computing and Grid-Technologies in Science and Education” (GRID 2018), Dubna, Russia, September 10–14, 2018, CEUR-WS.org/Vol2267

  • Adriani O., Barbarino G. C., Bazilevskaya G. A., Bellotti R. et al. 2016, Astrophys. J., 818(1), 1

    Article  Google Scholar 

  • Aghara S. K., Blattnig S. R., Norbury J. W., Singleterry R. C. 2009, Nuclear Instrum. Methods Phys. Res., B267, 1115

    Google Scholar 

  • Andersen A., Ballarini F., Battistoni G., Campanella M., Carboni M., Cerutti F., Empl A., Fass A., Ferrari A., Gadioli E., Garzelli M. V., Lee K., Ottolenghi A., Pelliccioni M., Pinsky L. S., Ranft J., Roesler S., Sala P. R., Wilson T. L. 2004, Adv. Space Res., 34, 1302

    Article  ADS  Google Scholar 

  • Cucinotta F. A., Wilson J. W., Saganti P., Hu X., Kim M.-H. Y., Cleghorn T., Zeitlind C., Tripathi R. K. 2006, Radiat. Meas., 41, 1235

    Article  ADS  Google Scholar 

  • De Wet W. C., Townsend L. W. 2017, Life Sci. Space Res., 14, 51

    Article  ADS  Google Scholar 

  • Ferrari A., Ranft J., Sala P. 2001, Phys. Med., 17(Suppl. 1), 72

    Google Scholar 

  • Ferrari A., Pelliccioni M., Rancati T. 2001, Radiat. Prot. Dosim., 93(2), 101

    Article  Google Scholar 

  • Heilbronn L. H., Borak T. B., Townsend L. W., Tsai Pi-En, Burnham C. A., McBeth R. A. 2015, Life Sci. Space Res., 7, 90

  • Kurosawa T., Nalao N., Nakamura T., Iwase H., Sato H., Uwamino Y., Fukumura A. 2000, Phys. Rev. C, 62, 044615-1

    Article  ADS  Google Scholar 

  • Matthia D., Berger T., Mrigakshi A. I., Reitz G. 2013, Adv. Space Res., 51, 329

    Article  ADS  Google Scholar 

  • Myers Z. D., Seo E. S., Wang J. Z., Alford R. W., Abe K., Anraku K. et al. 2005, Adv. Space Res., 35(1), 151

    Article  ADS  Google Scholar 

  • Norbury J. W., Slaba T. C., Sobolevsky N., Reddell B. D. 2017, Life Sci. Space Res., 14, 64

    Article  ADS  Google Scholar 

  • Pham T. T., El-Genk M. S., 2013, Simulations of space radiation interactions with materials and dose estimates for a lunar shelter and aboard the international space station, Technical Report ISNPS-UNM-1-2013, Institute for Space and Nuclear Power Studies (ISNPS), University of New Mexico

  • Timoshenko G. N., Krylov A. R., Paraipan M., Gordeev I. S. 2017, Radiat. Meas., 107, 27

    Article  ADS  Google Scholar 

  • Zeitlin C., Heilbronn L., Miller J. et al. 1997, Phys. Rev. C56, 388

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Timoshenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshenko, G.N., Gordeev, I.S. Simulation of radiation field inside interplanetary spacecraft. J Astrophys Astron 41, 5 (2020). https://doi.org/10.1007/s12036-020-9620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-020-9620-3

Keywords

Navigation