Skip to main content
Log in

Robust Nonparametric Regression for Heavy-Tailed Data

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

We propose a robust nonparametric regression method that can deal with heavy-tailed noise and also a heavy-tailed input variable. We decompose the trajectory matrix of the response variable of the regression problem to extract the regression function in a nonparametric way. We implement the decomposition in a robust way using iterative robust linear regressions. We show the effectiveness of the proposed method on synthetic and real data in comparison with two other nonparametric methods and a robust linear method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. All of the supplementary materials (MATLAB and R codes) are available at “www.researchgate.net/profile/Ferdos_Gorji/amp.”

  2. We use the method introduced by Chambers et al. (1976) to generate symmetric stable random numbers with \(1<\alpha \le 2\), \(\beta =0\), \(\gamma =1\), and \(\delta =0\).

  3. More explanation about the parameters of heavyPS is available at “http://heavy.mat.utfsm.cl.”

References

  • Alexanrov, T. (2009). A method of trend extraction using singular spectrum analysis. REVSTAT Statistical Journal 7(1), 1–22.

    MathSciNet  Google Scholar 

  • Assaleh, K. and Shanbaleh, T. (2010). Robust polynomial classifier using L\(^{1}\)-norm minimization. Applied Intelligence 33, 330–339.

    Google Scholar 

  • Azme, K., Ismail, Z., Haron, K., and Ahmad, T. M. (2005). Nonlinear growth models for modeling oil palm yield growth. Journal of Mathematics and Statistics 1(3), 225–233.

    Article  MathSciNet  MATH  Google Scholar 

  • Blattberg, R. and Sargent, T. (1971). Regression with non-Gaussian stable disturbances: some sampling results. Econometrica 39, 501–510.

    Article  Google Scholar 

  • Brillinger, D. R. (1984). The Collected Works of John W. Tukey, Vol. 1. London: Chapman & Hall.

    Google Scholar 

  • Caers, J., Beirlant, J., and Maes, M. A. (1999). Statistics for modeling heavy tailed distributions in geology: Part I. Methodology. Mathematical Geology 31(4), 391–410.

    Article  Google Scholar 

  • Cancho, V. G. and Lachos, V. H. (2010). A nonlinear regression model with skew-normal errors. Statistical Papers 51, 547–558.

    Article  MathSciNet  MATH  Google Scholar 

  • Chambers, J. M., Mallows, C. L., and Stuck, B. W. (1976). A method for simulating stable random variables. Journal of the American Statistical Association 71(354), 340–344.

    Article  MathSciNet  MATH  Google Scholar 

  • Fama, E. F. (1965). The behavior of stock market prices. Journal of Business 38, 34–105.

    Article  Google Scholar 

  • Garay, A. M., Lachos, V. H., and Abanto-Valle, C. A. (2011). Nonlinear regression models based on scale mixtures of skew-normal distributions. Journal of the Korean Statistical Society 40(1), 115–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Kondrashov, D. and Ghil, M. (2006). Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Processes in Geophysics 13, 151–159.

    Article  Google Scholar 

  • Nolan, J. P. (2001). Maximum likelihood estimation of stable parameters. In Lévy Processes: Theory and Applications, O. E. Barndorff-Nielsen, T. Mikosch and S. I. Resnick (eds), pp. 379–400. Boston: BirkhÄuser.

    Google Scholar 

  • Nolan, J. P. and Ojeda-Revah, D. (2013). Linear and nonlinear regression with stable errors. Journal of Econometrics 172, 186–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Osorio, F. (2016). Influence diagnostics for robust p-splines using scale mixture of normal distributions. Annals of the Institute of Statistical Mathematics 68, 589–619.

    Article  MathSciNet  MATH  Google Scholar 

  • Osorio, F. and Galea, M. (2006). Detection of a change-point in student-t linear regression models. Statistical Papers 47, 31–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Rachev, S. T. (2003). Handbook of Heavy Tailed Distributions in Finance. Amsterdam: Elsevier.

    Google Scholar 

  • Samorodnitsky, G., Rachev, S. T., Kurz-kim, J., and Stoyanov, S. V. (2007). Asymptotic distribution of unbiased linear estimators in the presence of heavy-tailed stochastic regressors and residuals. Probability and Mathematical Statistics 27(2), 275–302.

    MathSciNet  MATH  Google Scholar 

  • Uchaikin, V. V. and Zolotarev, V. M. (1999). Chance and Stability. Utrecht: De Gruyter.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the associate editor and two anonymous referees for their practical comments and advice, which helped us to improve our manuscript. We would also like to thank Professor J. P. Nolan for sharing his “Stable” package that we used to estimate the tail index of our real datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Aminghafari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorji, F., Aminghafari, M. Robust Nonparametric Regression for Heavy-Tailed Data. JABES 25, 277–291 (2020). https://doi.org/10.1007/s13253-019-00382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-019-00382-2

Keywords

Navigation