Skip to main content
Log in

Efficient Generator of Low-Temperature Argon Plasma with an Expanding Channel of the Output

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

To study the thermophysical, electrophysical and optical properties of argon, as well as the implementation of various plasma-chemical reactions, a direct-current generator of a high-enthalpy argon plasma jet with a self-adjusting arc length and an expanding channel of the output electrode has been developed. A comparative analysis of the electrophysical characteristics (current–voltage characteristics—CVC, efficiency) in the expanding and cylindrical channels of constant cross section was carried out. Electrical, calorimetric and spectral studies have shown that the created generator of low-temperature plasma provides the formation of a slightly divergent plasma jet of argon with a diameter of 5–8 × 10–3 m and enthalpy of 5–10 MJ/kg and a mass-average temperature at the outlet of the gas-discharge channel of 5–12 × 103 K with an electron concentration in the axial plasma of 1017 cm–3, the total electric power of the arc discharge 2–10 kW and the plasma-forming gas consumption rate of 1.5–3 × 10–3 kg/s. Depending on the initial conditions at a distance of 0–3 × 10–2 m from the nozzle section of the low-temperature plasma generator, the plasma flow velocity varies from 990 to 300 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Sanlisoy, A. and Carpinlioglu, M.O., Int. J. Hydrogen Energy, 2017, vol. 42, p. 1361.

    Article  Google Scholar 

  2. Zhukov, M.F., Koroteev, A.S., and Uryukov, B.A., Prikladnaya dinamika termicheskoi plazmy (Applied Dynamics of Thermal Plasma), Novosibirsk: Nauka, 1975.

  3. Glebov, I.A. and Rutberg, F.G., Moshchnye generatory plazmy (Powerful Plasma Generators), Moscow: Energoatomizdat, 1985.

  4. Koroteev, A.S., Mironov, V.M., and Svirchuk, Yu.S., Plazmotrony. Konstruktsii, kharakteristiki, raschet (Plasma Torches: Design, Characteristics, Calculations), Moscow: Mashinostroenie, 1993.

  5. Zhukov, M.F., Zasypkin, I.M., Timoshevskiy, A.N., et al., Elektrodugovye generatory termicheskoi plazmy. Nizkotemperaturnaya plazma (Electric Arc Generators of Thermal Plasma. Low-Temperature Plasma), vol. 17 of Nizkotemperaturnaya plazma (Low-Eemperature Plasma), Novosibirsk: Nauka, 1999.

  6. Asinovskiy, E.I., Kirillin, A.V., and Nizovskiy, V.L., Stabilizirovannye elektricheskie dugi i ikh primenenie v teplofizicheskom eksperimente (Stabilized Electric Arcs and Their Application in Thermophysical Experiment), Moscow: Fizmatlit, 2008, 2nd ed.

  7. Sheindlin, A.E., Asinovskiy, E.N., Baturin, V.A., and Batenin, B.M., Zh. Tekh. Fiz., 1963, vol. 33, no. 10, p. 1169.

    Google Scholar 

  8. Isakaev, E.Kh., Sinkevich, O.A., Tyuftyaev, A.S., and Chinnov, V.F., High Temp., 2010, vol. 48, no. 1, p. 97.

    Article  Google Scholar 

  9. Isakaev, E.Kh., Tyuftyaev, A.S., and Gadzhiev, M.Kh., Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 3, p. 369.

    Google Scholar 

  10. Bashkatov, V.A., Isakaev, E.Kh., Kreshin, M.B., et al., USSR Patent 814250, 1979.

  11. Asinovskiy, E.I., Pahomov, E.P., and Yarcev, I.M., Teplophys.Vys. Temp., 1978, vol. 16, no. 1, p. 28.

    Google Scholar 

  12. Asinovskiy, E.I., Pahomov, E.P., and Yarcev, I.M., Teplophys.Vys. Temp., 1971, vol. 9, no. 6, p. 1119.

    Google Scholar 

  13. Chinnov, V.F., Doctoral (Phys.–Math.) Dissertation, Moscow: Inst. High Temp., Russ. Acad. Sci., 2002.

  14. Belevtsev, A.A., Isakaev, E.Kh., Markin, A.V., and Chinnov, V.F., High Temp., 2002, vol. 40, no. 1, p. 21.

    Article  Google Scholar 

  15. Nizkotemperaturnaya plazma (Low-Eemperature Plasma), Zhukov, M.F., Ed., vol. 1: Teoriya stolba elektricheskoi dugi (Theory of the Electric Arc Column), Engelsht, V.S. and Uryukov, B.A., Eds., Novosibirsk: Nauka, 1990.

  16. Artemov, V.I., Levitan, Yu.S., and Sinkevich, O.A., Neustoichivosti i turbulentnost’ v nizkotemperaturnoi plazme (Instabilities and Turbulence in a Low-Temperature Plasma), Moscow: Mosk. Energ. Inst., 1994.

    Google Scholar 

  17. Gadzhiev, M.Kh., Sargsyan, M.A., Tereshonok, D.V., and Tyuftyaev, A.S., Europhys. Lett., 2015, vol. 111, 25001.

    Article  ADS  Google Scholar 

  18. Ochkin, V.N., Spektroskopiya nizkotemperaturnoi plazmy (Spectroscopy of Low-temperature Plasma), Moscow: Fizmatlit, 2010.

  19. Biberman, L.M., Vorobiev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.

  20. Chinnov, V.F., Izluchatel’nye svoistva i spektroskopiya nizkotemperaturnoi plazmy (Emission Properties and Spectroscopy of Low-Temperature Plasma), Moscow: Mosk. Energ. Inst., 2012.

  21. Gadzhiev, M.Kh., Kulikov, Y.M., Panov, V.A., Son, E.E., and Tyuftyaev, A.S., High Temp., 2016, vol. 54, no. 1, p. 38.

    Article  Google Scholar 

  22. Eisazadeh-Far, K., Metghalchi, H., and Keck, J.C., J. Energy Resour. Technol., 2011, vol. 133, 022201.

    Article  Google Scholar 

  23. Dresvin, S.V. and Ivanov, D.V., Fizika plasmy: uchebnoe posobie (Physics of Plasma: A Handbook), St. Petersburg: St. Petersburg. Gos. Politekh. Univ., 2013.

  24. Tanaka, M., Tashiro, S., Satoh, T., Murphy, A.B., and Lowke, J.J., Sci. Technol. Weld. Joining, 2008, vol. 13, no. 3, p. 225.

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the Russian foundation for Basic Research, project no. 18-29-24 203 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kh. Gadzhiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadzhiev, M.K., Kulikov, Y.M., Son, E.E. et al. Efficient Generator of Low-Temperature Argon Plasma with an Expanding Channel of the Output. High Temp 58, 12–20 (2020). https://doi.org/10.1134/S0018151X2001006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X2001006X

Navigation