Skip to main content
Log in

Dynamic Strength of Titanium Melt at Extremely High Extension Rates

  • SHORT COMMUNICATIONS
  • Published:
High Temperature Aims and scope

Abstract

The results of a study of the destruction of liquid titanium at an extremely high strain rate are presented. The value of tensile stresses leading to disruption of the continuity of the titanium melt at a strain rate of ~109 s–1 was determined. Interferometry with a frequency-modulated diagnostic pulse of a picosecond resolution was used to study the surface motion of a titanium target caused by exposure to femtosecond laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kanel’, G.I., Fortov, V.E., and Razorenov, S.V., Phys.—Usp., 2007, vol. 50, no. 8, p. 809.

    Google Scholar 

  2. Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., Zhakhovskii, V.V., Inogamov, N.A., Komarov, P.S., Ovchinnikov, A.V., Fortov, V.E., Khokhlov, V.A., and Shepelev, V.V., JETP Lett., 2010, vol. 91, no. 9, p. 471.

    Article  ADS  Google Scholar 

  3. Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Agranat, M.B., and Kanel, G.I., JETP Lett., 2015, vol. 101, no. 4, p. 276.

    Article  ADS  Google Scholar 

  4. Skripov, V.P., Metastabil’naya zhidkost’ (Metastable Fluid), Moscow: Nauka, 1972.

  5. Kuksin, Yu., Norman, G.E., Pisarev, V.V., Stegailov, V.V., and Yanilkin, A.V., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, no. 17, 174101.

    Article  ADS  Google Scholar 

  6. Mayer, A.E. and Mayer, P.N., J. Appl. Phys., 2015, vol. 118, 035903.

    Article  ADS  Google Scholar 

  7. Kanel, G.I., Int. J. Fract., 2010, vol. 163, p. 173.

    Article  Google Scholar 

  8. Ashitkov, S.I., Komarov, P.S., Struleva, E.V., and Agranat, M.B., High Temp., 2018, vol. 56, no. 6, p. 873.

    Article  Google Scholar 

  9. Ashitkov, S.I., Komarov, P.S., Agranat, M.B., Kanel, G.I., and Fortov, V.E., JETP Lett., 2013, vol. 98, no. 7, p. 384.

    Article  ADS  Google Scholar 

  10. Krasyuk, I.K., Pashinin, P.P., Semenov, A.Yu., Khishchenko, K.V., and Fortov, V.E., Laser Phys., 2016, vol. 26, no. 9, 094001.

    Article  ADS  Google Scholar 

  11. Kanel, G.I., Savinykh, A.S., Garkushin, G.V., and Razorenov, S.V., JETP Lett., 2015, vol. 102, no. 8, p. 615.

    Article  Google Scholar 

  12. Ashitkov, S.I., Komarov, P.S., Ovchinnikov, A.V., Struleva, E.V., Zhakhovskii, V.V., Inogamov, N.A., and Agranat, M.B., Quantum Electron., 2014, vol. 44, no. 6, p. 535.

    Article  ADS  Google Scholar 

  13. Kanel, G.I., Razorenov, S.V., Utkin, A.V., and Grady, D.E., AIP Conf. Proc., 1996, vol. 370, p. 503.

    Article  ADS  Google Scholar 

  14. Zaretsky, E.B. and Kanel, G.I., J. Appl. Phys., 2012, vol. 112, 053511.

    Article  ADS  Google Scholar 

  15. Dudarev, E.F., Markov, A.B., Mayer, A.E., Bakach, G.P., Tabachenko, A.N., Kashin, O.A., Pochivalova, G.P., Skosyrskii, A.B., Kitsanov, S.A., Zhorovkov, M.F., and Yakovlev, E.V., Russ. Phys. J., 2013, vol. 55, p. 1451.

    Article  Google Scholar 

  16. Ashitkov, S.I., Inogamov, N.A., Komarov, P.S., Zhakhovsky, V.V., Oleynik, I.I., Agranat, M.B., Kanel, G.I., and Fortov, V.E., AIP Conf. Proc., 2012, vol. 1464, p. 120.

    Article  ADS  Google Scholar 

  17. Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Inogamov, N.A., Agranat, M.B., Kanel, G.I., and Khishchenko, K.V., J. Phys.: Conf. Ser., 2015, vol. 653, 012001.

    Google Scholar 

  18. Ashitkov, S.I., Komarov, P.S., Ovchinnikov, A.V., Struleva, E.V., and Agranat, M.B., JERTP Lett., 2016, vol. 103, no. 8, p. 544.

    Article  ADS  Google Scholar 

  19. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., Vest. Ob”edinen.Inst. Vys. Temp., 2018, vol. 1, no. 1, p. 130.

    Google Scholar 

  20. Geindre, J.P., Audebert, P., Rebibo, S., and Gauthier, J.C., Opt. Lett., 2001, vol. 26, p. 1612.

    Article  ADS  Google Scholar 

  21. Temnov, V.V., Sokolovski-Tinten, K., Zhou, P., and Linde, D., J. Opt. Soc. Am. B, 2006, vol. 23, p. 1954.

    Article  ADS  Google Scholar 

  22. Keita, N.M. and Steinemann, S.G., Phys. Chem. Liq., 1984, vol. 14, p. 155.

    Article  Google Scholar 

  23. Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh, Spravochnoe izdanie (Thermophysical Properties of Metals at High Temperatures: Reference Edition), Moscow: Metallurgiya, 1989.

  24. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High. Temp., 2018, vol. 56, no. 5, p. 648.

    Article  Google Scholar 

  25. Wu, C. and Zhigilei, L.V., Appl. Phys. A, 2014, vol. 114, p. 11.

    Article  ADS  Google Scholar 

  26. Kikoin, I.K., Tablitsa fizicheskikh velichin. Spravochnik (Table of Physical Quantities: A Reference Book), Moscow: Atomizdat, 1976.

  27. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High Temp., 2019, vol. 57, no. 4, p. 486.

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research, project no. 18-38-00662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Struleva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struleva, E.V., Komarov, P.S. & Ashitkov, S.I. Dynamic Strength of Titanium Melt at Extremely High Extension Rates. High Temp 57, 948–950 (2019). https://doi.org/10.1134/S0018151X19060166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19060166

Navigation