Skip to main content
Log in

Inclusion of the Coulomb Interaction in the Embedded-Atom Model: Lithium–Lead System

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

A scheme is proposed for the incorporation of a screened Coulomb interaction into an embedded-atom model, which allows one to describe two- and multicomponent solutions with strong component interaction by the molecular dynamics method. The effective particle charges satisfy the electroneutrality condition and are determined via minimization of the total energy. The potentials of the pure components and fitted cross pair potentials are used in the calculations, with allowance for the electronic contributions to energy and pressure. For pairs of 1–2 in Li–Pb solutions (1 is for Li, and 2 is for Pb), a pair potential of the form 8–4 is proposed. Calculations were performed for several Li–Pb melts at zero pressure and temperatures up to 1000 K, as well as for a Li17Pb83 solution under shock compression at temperatures up to 25 000 K and pressures up to 470 MPa. The thermodynamic properties of the Li17Pb83 solution are presented in tabular form. The diffusion and structural properties of this and other solutions, the Grüneisen coefficients, and the Hugoniot adiabat are also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Blanket, Shield Design, and Material Data Base, ITER Documentation Ser., no. 29, Vienna: IAEA, 1991.

  2. Fusion Eng. Des., 1991, vol. 14, nos. 3–4.

  3. Nuclear Data for Science and Technology: Proc. Int. Conf., Bockhoff, K.H., Ed., Antwerp, Belgium, 1982.

  4. Stankus, S.V., Khairulin, R.A., Mozgovoy, A.G., et al., J. Phys.: Conf. Ser., 2008, vol. 98, 062017.

    Google Scholar 

  5. Tiwari, A., Allison, B., Hohorst, J.K., et al., Fusion Eng. Des., 2012, vol. 87, p. 156.

    Article  Google Scholar 

  6. Ruppersberg, H. and Speicher, W., Z. Naturforsch.,A: Phys. Sci., 1976, vol. 31, p. 47.

    Google Scholar 

  7. Saar, J. and Ruppersberg, H., J. Phys. F: Met. Phys., 1987, vol. 17, p. 305.

    Article  ADS  Google Scholar 

  8. Predel, B. and Oehme, Z., Z. Metallkd., 1979, vol. 70, p. 450.

    Google Scholar 

  9. Terlicka, S., Dębski, A., and Gąsior, W., J. Mol. Liq., 2018, vol. 249, p. 66.

    Article  Google Scholar 

  10. Gąsior, W. and Moser, Z., J. Nucl. Mater., 2001, vol. 294, nos. 1–2, p. 77.

    Article  ADS  Google Scholar 

  11. Becker, W., Schwitzgebel, G., and Ruppersberg, H., Z. Metallkd., 1981, vol. 72, no. 3, p. 186.

    Google Scholar 

  12. Zhou, Ch., Guo, C., Li, Ch., and Du, Zh., J. Nucl. Mater., 2016, vol. 477, p. 95.

    Article  ADS  Google Scholar 

  13. Ruppersberg, H. and Egger, H., J. Chem. Phys., 1975, vol. 63, p. 4095.

    Article  ADS  Google Scholar 

  14. Ruppersberg, H. and Reiter, H., J. Phys. F: Met. Phys., 1982, vol. 12, p. 1311.

    Article  ADS  Google Scholar 

  15. Mudry, S., Shtablavyi, I., Sklyarchuk, V., and Plevachuk, Yu., J. Nucl. Mater., 2008, vol. 376, no. 3, p. 371.

    Article  ADS  Google Scholar 

  16. Copestake, A.P., Evans, R., Ruppersberg, H., and Schirmacher, W., J. Phys. F: Met. Phys., 1983, vol. 13, no. 10, p. 1993.

    Article  ADS  Google Scholar 

  17. Soltwisch, M., Quitmann, D., Ruppersberg, H., and Suck, J.B., J. Phys., Colloq., 1980, vol. C8, p. 167.

    Google Scholar 

  18. Schwitzgebel, G. and Langen, G., Z. Naturforsch.,A: Phys. Sci., 1981, vol. 36a, p. 1225.

    Google Scholar 

  19. Wang, B., Xiao, S., Gan, X., et al., Comput. Mater. Sci., 2014, vol. 93, p. 74.

    Article  Google Scholar 

  20. Van der Marel, C., Geertsma, W., and van der Lugt, W., J. Phys. F: Met. Phys., 1980, vol. 10, no. 10, p. 2305.

    Article  ADS  Google Scholar 

  21. Holzhey, Ch., Brouers, F., Franz, J.R., and Schirmacher, W., J. Non-Cryst. Solids, 1984, vols. 61–62, no. 1, p. 65.

    Article  ADS  Google Scholar 

  22. Senda, Y., Shimojo, F., and Hoshino, K., J. Phys.: Condens. Matter, 2000, vol. 12, no. 28, p. 6101.

    ADS  Google Scholar 

  23. Ruppersberg, H. and Schirmacher, W., J. Phys. F: Met. Phys., 1984, vol. 14, no. 12, p. 2787.

    Article  ADS  Google Scholar 

  24. Jacucci, G., Ronchetti, M., and Schirmacher, W., J. Phys., Colloq., 1985, vol. 46, p. 385.

    Google Scholar 

  25. Aniya, M. and Ginoza, M., J. Phys. Soc. Jpn., 1987, vol. 56, no. 6, p. 2046.

    Article  ADS  Google Scholar 

  26. Fraile, A., Cuesta-López, S., Iglesias, R., et al., J. Nucl. Mater., 2013, vol. 440, nos. 1–3, p. 98.

    Article  ADS  Google Scholar 

  27. Fraile, A., Cuesta-López, S., Caro, A., et al., J. Nucl. Mater., 2014, vol. 448, p. 103.

    Article  ADS  Google Scholar 

  28. Gan, X., Xiao, Sh., Deng, H., et al., Fusion Eng. Des., 2014, vol. 89, p. 2946.

    Article  Google Scholar 

  29. Belashchenko, D.K. and Ostrovskii, O.I., High Temp., 2009, vol. 47, no. 2, p. 211.

    Article  Google Scholar 

  30. Belashchenko, D.K., High Temp., 2015, vol. 53, no. 5, p. 649.

    Article  Google Scholar 

  31. Belashchenko, D.K., Liquid Metals: From Atomistic Potentials to Properties, Shock Compression, Earth’s Core, and Nanoclusters, Nova Science, 2018.

  32. Belashchenko, D.K., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 5, p. 779.

    Article  Google Scholar 

  33. Belashchenko, D.K., High Temp., 2017, vol. 55, no. 3, p. 370.

    Article  Google Scholar 

  34. Bystrov, P.I., Kagan, D.N., Krechetova, G.A., Shpil’rain, E.E., Zhidkometallicheskie teplonositeli teplovykh trub i energeticheskikh ustanovok (Liquid Metal Coolants of Heat Pipes and Power Plants), Moscow: Nauka, 1988.

    Google Scholar 

  35. Assael, M.J., Kalyva, A.E., Antoniadis, K.D., et al., High Temp.—High Pressure, 2012, vol. 41, p. 161.

    Google Scholar 

  36. Gallego, L.J., Somoza, J.A., and Alonso, J.A., Phys. Chem. Liq., 1987, vol. 16, no. 4, p. 249.

    Article  Google Scholar 

  37. Gonzalez, D.J. and Silbert, M., J. Phys. F: Met. Phys., 1988, vol. 18, no. 11, p. 2353.

    Article  ADS  Google Scholar 

  38. Hoffman, N.J., Darnell, A., and Blink, J.A., Properties of lead–lithium solutions, Preprint of the Univ. California, Livermore, CA, 1980, no. 9455L.

  39. Brandt, R. and Schulz, B., J. Nucl. Mater., 1988, vol. 152, nos. 2–3, p. 178.

    Article  ADS  Google Scholar 

  40. Jauch, U., Karcher, V., Schulz, B., and Haase, G., Thermophysical Properties in the System Li–Pb, Karlsruhe: Nucl. Res. Center, 1986.

    Google Scholar 

  41. Filippov, S.I., Kazakov, N.B., and Pronin, L.A., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1966, no. 3, p. 8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Belashchenko.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belashchenko, D.K. Inclusion of the Coulomb Interaction in the Embedded-Atom Model: Lithium–Lead System. High Temp 57, 848–858 (2019). https://doi.org/10.1134/S0018151X19060075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19060075

Navigation