Skip to main content

Advertisement

Log in

Trophic preferences of three pelagic fish inhabiting the Galapagos Marine Reserve: ecological inferences using multiple analyses

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

There is a great need to understand how resource interactions alter the functioning of ecosystems, where the selective elimination of pelagic fishes can lead to changes in food web structure. This work analyzes the trophic niches of three species of commercial importance in the Galapagos Marine Reserve, yellowfin tuna, Thunnus albacares (TA), skipjack tuna, Katsuwonus pelamis (KP), and wahoo, Acanthocybium solandri (AS), via multiple analyses. According to the prey-specific index of relative importance, the most important prey for TA was Dosidicus gigas, while for AS it was unidentified pelagic fish. Interspecific differences were found between the isotopic signatures of AS and those of TA and KP. The isotope mixing model provides evidence for some predominance of D. gigas in the diets of TA and KP, while the fishes Selar crumenophthalmus and Paranthias colonus contribute to the diet of AS. The stable isotope Bayesian ellipses show a high overlap between TA and KP, suggesting a similar use of resources and feeding areas, while the ellipse of AS does not overlap with that of the other species. Both AS and TA were present around the islands more commonly during the day, with a peak in detections in the morning for AS and a greater presence of TA throughout the afternoon; there were only a few detections of KP in the days immediately after tagging. In summary, the results of this study suggest a pelagic foraging strategy with differential consumption of prey between AS and the other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alatorre-Ramirez V, Galván-Magaña F, Torres-Rojas Y, Olson R (2017) Trophic segregation of mixed schools of yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis) caught in the eastern tropical Pacific Ocean. Fish Bull 115:252–268

    Article  Google Scholar 

  • Allen G, Robertson D (1994) Fishes of the tropical eastern Pacific. University of Hawaii Press, Honolulu

    Google Scholar 

  • Alverson F (1963) The food of yellowfin and skipjack tunas in the eastern tropical Pacific Ocean. Inter-American Tropical Tuna Communications Bulletin 7:295–396

    Google Scholar 

  • Amundsen P, Gabler H, Staldvik F (1996) A new approach to graphical analysis of feeding strategy from stomach contents data-modification of the Costello (1990) method. J Fish Biol 48:607–614

    Google Scholar 

  • Arai T, Kotake A, Kayama S, Ogura M, Watanabe Y (2005) Movements and life history patterns of the skipjack tuna Katsuwonus pelamis in the western Pacific, as revealed by otolith Sr/Ca ratios. J Mar Biol Assoc UK 85:1211–1216

    Article  Google Scholar 

  • Au D (1991) Polyspecific nature of tuna schools: sharks, dolphin, and seabird associates. Fish Bull 89:343–354

    Google Scholar 

  • Baque-Menoscal J, Páez-Rosas D, Wolff M (2012) Hábitos alimentarios de dos peces pelágicos Thunnus albacares y Acanthocybium solandri de la Reserva Marina de Galápagos. Rev Biol Mar Oceanog 47:1–11

    Article  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London

    Google Scholar 

  • Batts B (1972) Age and growth of skipjack tuna, Katsuwonus pelamis (Linnaeus), in North Carolina waters. Chesapeake Science 13:237–244

    Article  Google Scholar 

  • Bearhop S, Adams C, Waldron S, Fuller R, Macleod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Article  Google Scholar 

  • Bernal D, Sepúlveda C, Musyl M, Brill R (2009) The eco-physiology of swimming and movement patterns of tunas, billfishes, and large pelagic sharks. In Fish locomotion-an etho-ecological perspective. Enfield: Science Publishers.

  • Block B, Keen K, Castillo B, Dewar H, Freund E, Marcinek D, Brill R, Farwell C (1997) Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range. Mar Biol 130:119–132

    Article  Google Scholar 

  • Boecklen W, Yarnes C, Cook B, James A (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440

    Article  Google Scholar 

  • Bolnick D, Svanback J, Fordyce L, Yang J, Davis C, Husley D, Forister M (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    Article  PubMed  Google Scholar 

  • Brill R, Block B, Boggs C, Bigelow K, Freund E, Marcinek D (1999) Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes. Mar Biol 133:395–408

    Article  Google Scholar 

  • Brown S, Bizzarro J, Cailliet G, Ebert D (2012) Breaking with tradition: redefining measures for diet description with a case study of the Aleutian skate Bathyraja aleutica (Gilbert 1896). Environ Biol Fish 95:3–20

    Article  Google Scholar 

  • Bucaram S, Hearn A, Trujillo A, Rentería W, Bustamante R, Morán G, Reck G, García J (2018) Assessing fishing effects inside and outside an MPA: The impact of the Galapagos Marine Reserve on the Industrial pelagic tuna fisheries during the first decade of operation. Mar Policy 87:212–225

    Article  Google Scholar 

  • Castrejon M, Charles A (2013) Improving fisheries co-management through ecosystem-based spatial management: The Galapagos Marine Reserve. Mar Policy 38:235–245

    Article  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (δ15N and δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    Article  CAS  Google Scholar 

  • Chen H, Hagerty S, Crotty S, Bertness M (2016) Direct and indirect trophic effects of predator depletion on basal trophic levels. Ecology 97:338–346

    Article  PubMed  Google Scholar 

  • Clarke M (1986) A Handbook for the Identification of Cephalopod Beaks. Clarendon Press, Oxford

    Google Scholar 

  • Clarke K, Warwick R (2001) Change in marine communities: an approach to statistical analysis and interpretation, Primer-E Ltd, Plymouth.

  • Dalgleish H, Koons D, Adler P (2010) Can life-history traits predict the response of forb populations to changes in climate variability? J Ecol 98:209–217

    Article  Google Scholar 

  • Doney S, Ruckelshaus M, Duffy J, Barry J, Chan F, English C, Galindo H, Grebmeier J, Hollowed A, Knowlton N, Polovina J, Rabalais N, Sydeman W, Talley L (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37

    Article  Google Scholar 

  • Duffy L, Olson R, Lennert-Cody C, Galván-Magaña F, Bocanegra N, Kuhnert P (2015) Foraging ecology of silky shark Carcharhinus falciformis, captured by the tuna purseseine fishery in the eastern Pacific Ocean. Mar Biol 162:571–593

    Article  CAS  Google Scholar 

  • Ehrhardt N, Solís N, Jaquemin P, Ortiz C, Ulloa R, González D, García B (1986) Análisis de la biología y condiciones del stock del calamar gigante Dosidicus gigas en el Golfo de California, México, durante 1980. Cienc Pesq 5:63–76

  • Eslava N, González L, Gaertner D (2003) Asociación de la abundancia y la distribución vertical de atunes y peces de pico en el sureste del Mar Caribe. Rev Biol Trop 51:213–219

    PubMed  Google Scholar 

  • Fischer W, Krupp F, Schneider W, Sommer C, Carpenter K, Niem V (1995) Guía FAO para la identificación de especies para los fines de la pesca. In Pacífico centro-oriental. Vol. I. Plantas e invertebrados. Rome: FAO press.

  • Fitch J, Brownell R Jr (1968) Fish otholits in cetacean stomach and their importance in interpreting feeding habits. J Fish Res Board Can 25:2561–2574

    Article  Google Scholar 

  • France R (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312

    Article  Google Scholar 

  • Galván-Magaña F (1988) Composición y análisis de la dieta del atún aleta amarilla Thunnus albacares en el Océano Pacif́ ico mexicano durante el periodo 1984–1985. M.S. thesis, 86 p. Centro Interdisciplinario de Ciencias Marinas del Instituto Politécnico Nacional, La Paz, Baja California Sur, México

  • Galván-Magaña F, Polo-Silva C, Hernández-Aguilar S, Sandoval-Londoño A, Ochoa-Díaz R, Aguilar-Castro N, Castañeda-Suárez D, Chavez-Costa A, Baigorrí-Santacruz A, Torres-Rojas Y, Abitia-Cárdenas L (2013) Shark predation on cephalopods in the Mexican and Ecuadorian Pacific Ocean. Deep-Sea Res II Top Stud Oceanogr 95:52–62

    Article  Google Scholar 

  • García-Godos I (2001) Patrones morfológicos del otolito sagitta de algunos peces óseos del mar peruano. Instituto del Mar del Perú Press, Lima

    Google Scholar 

  • Gislason H, Daan N, Rice J, Pope J (2010) Size, growth, temperature and the natural mortality of marine fish. Fish Fish 11:149–158

  • Goericke R, Fry B (1994) Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochem Cy 8:85–90

    Article  CAS  Google Scholar 

  • Graham B, Grubbs D, Holland K, Popp B (2007) A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar Biol 150:647–658

    Article  Google Scholar 

  • Grove J, Lavenberg R (1997) The fishes of the Galapagos Islands. Stanford University Press, California

    Google Scholar 

  • Hampton J, Sibert J, Kleiber P, Maunder M, Harley S (2005) Decline of Pacific tuna populations exaggerated? Nature 434:E1–E2

    Article  CAS  PubMed  Google Scholar 

  • Hastings P, Findley L, Van der Heiden A (2010) Fishes of the Gulf of California. Arizona University Press, Tucson

    Google Scholar 

  • Hearn A (2008) The rocky path to sustainable fisheries and conservation in the Galapagos Marine Reserve. Ocean Coast Manage 51:567–574

    Article  Google Scholar 

  • Hearn A, Ketchum J, Klimley A, Espinoza E, Peñaherrera C (2010) Hotspots within hotspots? Hammerhead shark movements around Wolf Island, Galapagos Marine Reserve. Mar Biol 157:1899–1915

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunsicker M, Olson R, Essington T, Maunder M, Duffy L, Kitchell J (2012) Potential for top-down control on tropical tunas based on size structure of predator–prey interactions. Mar Ecol Prog Ser 445:263–277

    Article  Google Scholar 

  • Hussey N, Brush J, McCarthy I, Fisk A (2010) δ15N and δ13C diet–tissue discrimination factors for large sharks under semi-controlled conditions. Comp Biochem Physiol A Mol Integr Physiol 155:445–453

    Article  PubMed  CAS  Google Scholar 

  • Hyslop E (1980) Stomach contents analysis: a review of methods and their application. J Fish Biol 17:411–429

    Article  Google Scholar 

  • Itano D, Holland K (2000) Movement and vulnerability of bigeye (Thunnus obesus) and yellowfin tuna (Thunnus albacares) in relation to FADs and natural aggregation points. Aquat Living Resour 13:213–223

    Article  Google Scholar 

  • Iversen E, Yoshida H (1957) Notes on the biology of the wahoo in the Line Islands. Pac Sci 11:370–379

    Google Scholar 

  • Jackson A, Inger R, Parnell A, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses. J Animal Ecol 80:595–602

    Article  Google Scholar 

  • Ketchum J, Hearn A, Klimley A, Peñaherrera C, Espinoza E, Bessudo S, Soler G, Arauz R (2014) Inter-island movements of scalloped hammerhead sharks (Sphyrna lewini) and seasonal connectivity in a marine protected area of the eastern tropical Pacific. Mar Biol 161:939–951

    Article  Google Scholar 

  • Kim S, Martínez del Rio C, Casper D, Koch P (2012) Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J Exp Biol 215:2495–2500

    Article  PubMed  Google Scholar 

  • Korsmeyer K, Dewar H (2001) Tuna metabolism and energetics. In: Block B, Stevens G (eds) Fish physiology: tuna physiology, ecology, and evolution. Academic Press, San Diego

    Google Scholar 

  • Layman C, Arrington D, Montaña C, Post D (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

    Article  PubMed  Google Scholar 

  • Logan J, Jardine T, Miller TJ, Bunn S, Cunjak R, Lutcavage M (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846

    Article  PubMed  Google Scholar 

  • Marasco R, Goodman D, Grimes C, Lawson P, Punt A, Quinn T (2007) Ecosystem-based fisheries management: some practical suggestions. Can J Fish Aquat Sci 64:928–939

    Article  Google Scholar 

  • Martínez del Rio C, Wolf N, Carleton S, Gannes L (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91–111

    Article  Google Scholar 

  • Matich P, Heithaus M, Layman C (2011) Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J Anim Ecol 80:294–305

    Article  PubMed  Google Scholar 

  • McConnaughey T, McRoy C (1979) Food-web structure and fractionation of carbon isotopes in the Bering Sea. Mar Biol 53:257–262

    Article  CAS  Google Scholar 

  • Mendoza-Ávila M, Zavala-Zambrano G, Galván-Magaña F, Loor-Andrade P (2017) Feeding habits of wahoo (Acanthocybium solandri) in the eastern Pacific Ocean. J Mar Biol Assoc UK 97:1505–1510

    Article  Google Scholar 

  • Nakamura E (1965) Food and feeding habits of skipjack tuna (Katsuwonus pelamis) from the Marquesas and Tuamotu Islands. Trans Am Fish Soc 94:236–242

    Article  Google Scholar 

  • Newsome S, Martinez del Rio C, Bearhop S, Phillips D (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436

    Article  Google Scholar 

  • Nielsen J, Clare E, Hayden B, Brett M, Kratina P (2018) Diet tracing in ecology: Method comparison and selection. Methods Ecol Evol 9:278–291

    Article  Google Scholar 

  • Nigmatullin C, Nesis K, Arkhipkin A (2001) A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fish Res 54:9–19

    Article  Google Scholar 

  • Nikolsky G (1963) The ecology of fishes. Academic Press, London

    Google Scholar 

  • Olson R, Boggs C (1986) Apex predation by yellowfin tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations. Can J Fish Aquat Sci 43:1760–1775

    Article  Google Scholar 

  • Olson R, Duffy L, Kuhnert P, Galván-Magaña F, Bocanegra-Castillo N, Alatorre-Ramírez V (2014) Decadal diet shift in yellowfin tuna (Thunnus albacares) suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar Ecol Prog Ser 497:157–178

    Article  Google Scholar 

  • Olson R, Young J, Ménard F, Potier M, Allain V, Goñi N, Logan J, Galván-Magaña F (2016) Bioenergetics, trophic ecology, and niche separation of tunas. Adv Mar Biol 74:199–344

    Article  CAS  PubMed  Google Scholar 

  • Oxenford H, Murray P, Luckhurst B (2003) The biology of guajo (Acanthocybium solandri) in the western central Atlantic. Gulf Caribb Res 15:33–49

    Google Scholar 

  • Oyafuso Z, Toonen R, Franklin E (2016) Temporal and spatial trends in prey composition of wahoo Acanthocybium solandri: a diet analysis from the central North Pacific Ocean using visual and DNA bar-coding techniques. J Fish Biol 88:1501–1523

    Article  CAS  PubMed  Google Scholar 

  • Páez-Rosas D, Aurioles-Gamboa D, Alava J, Palacios D (2012) Stable isotopes indicate differing foraging strategies in two sympatric otariids of the Galapagos Islands. J Exp Mar Biol Ecol 425:44–52

    Article  CAS  Google Scholar 

  • Páez-Rosas D, Insuasti-Zarate P, Riofrío-Lazo R, Galván-Magaña F (2018) Feeding behavior and trophic interaction of three shark species in the Galapagos Marine Reserve. PeerJ. https://doi.org/10.7717/peerj.4818

  • Palacios D, Bograd S, Foley, D, Schwing (2006) Oceanographic characteristics of biological hot spots in the North Pacific: a remote sensing perspective. Deep-Sea Res II Top Stud Oceanogr 53: 250-269.

  • Pancost R, Freeman K, Wakeham S, Robertson C (1997) Controls on carbon isotope fractionation by diatoms in the Peru upwelling region. Geochim Cosmochim Acta 61:4983–4991

    Article  CAS  Google Scholar 

  • Parnell A, Inger R, Bearhop S, Jackson A (2010) Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. PLoS One. https://doi.org/10.1371/journal.pone.0009672.

  • Phillips D, Inger R, Bearhop S, Jackson A, Moore J, Parnell A et al (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835

    Article  Google Scholar 

  • Post D, Layman C, Arrington D, Takimoto G, Quattrochi J, Montaña C (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    Article  PubMed  Google Scholar 

  • Rosas-Luis R, Loor-Andrade P, Carrera-Fernández M, Pincay-Espinoza J, Vinces-Ortega C, Chompoy-Salazar L (2016) Cephalopod species in the diet of large pelagic fish (sharks and billfishes) in Ecuadorian waters. Fish Res 173:159–168

    Article  Google Scholar 

  • Ruiz-Cooley R, Villa E, Gould W (2010) Ontogenetic variation of δ13C and δ15N recorded in the gladius of the jumbo squid Dosidicus gigas: geographic differences. Mar Ecol Prog Ser 399:187–198

    Article  CAS  Google Scholar 

  • Schaefer K (1998) Reproductive biology of yellowfin tuna (Thunnus albacares) in the eastern Pacific tuna. Inter-American Tropical Tuna Communications Bulletin 21:205–272

    Google Scholar 

  • Schaefer K, Fuller D (2007) Vertical movement patterns of skipjack tuna (Katsuwonus pelamis) in the eastern equatorial Pacific Ocean, as revealed with archival tags. Fish Bull 105:379–389

    Google Scholar 

  • Schaeffer B, Morrison J, Kamykowski D, Feldman G, Xie L, Liu Y, McCulloch A, Banks S (2008) Phytoplankton biomass distribution and identification of productive habitats within the Galapagos Marine Reserve by MODIS, a surface acquisition system, and in-situ measurements. Remote Sens Environ 112:3044–3054

    Article  Google Scholar 

  • Scott M, Chivers S, Olson R, Fiedler P, Holland K (2012) Pelagic predator associations: tuna and dolphins in the eastern tropical Pacific Ocean. Mar Ecol Prog Ser 458:283–302

    Article  Google Scholar 

  • Sepulveda C, Aalbers S, Ortega-Garcia S, Wegner N, Bernal D (2011) Depth, distribution and temperature preferences of wahoo (Acanthocybium solandri) of Baja California Sur, Mexico. Mar Biol 158:917–926

    Article  Google Scholar 

  • Sibert J, Hampton J (2003) Mobility of tropical tunas and the implications for fisheries management. Mar Policy 27:87–95

    Article  Google Scholar 

  • Sibert J, Hampton J, Kleiber P, Maunder M (2006) Biomass, size, and trophic status of top predators in the Pacific Ocean. Science 314:1773–1776

    Article  CAS  PubMed  Google Scholar 

  • Theisen T, Bowen B, Lanier W, Baldwin J (2008) High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae). Mol Ecol 17:4233–4247

    Article  CAS  PubMed  Google Scholar 

  • Tieszen L, Boutton T, Tesdahl K, Slade N (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for d13C analysis of diet. Oecologia 57:32–37

    Article  CAS  PubMed  Google Scholar 

  • Varela J, Larrañaga A, Medina A (2011) Prey-muscle carbon and nitrogen stable-isotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus). J Exp Mar Biol Ecol 406:21–28

    Article  CAS  Google Scholar 

  • Varela J, Intriago K, Flores J, Lucas-Pilozo C (2017) Feeding habits of juvenile yellowfin tuna (Thunnus albacares) in Ecuadorian waters assessed from stomach content and stable isotope analysis. Fishs Res 194:89–98

    Article  Google Scholar 

  • Vaudo J, Heithaus M (2011) Dietary niche overlap in a nearshore elasmobranch mesopredator community. Mar Ecol Prog Ser 425:247–260

    Article  Google Scholar 

  • Watanabe H (1958) On the difference of the stomach contents of the yellowfin and bigeye tunas from the western equatorial Pacific. Rep Nankai Reg Fish Res Lab 7:72–81

    Google Scholar 

Download references

Acknowledgments

We thank the Galápagos National Park (GNP) for logistical support and granting us permission to collect the samples used in this study. We also thank the Universidad San Francisco de Quito (USFQ) in Ecuador and Centro Interdisciplinario de Ciencias Marinas (CICIMAR) in Mexico for financial and logistical support during the preparation of this manuscript. We thank artisanal fishermen of Galapagos, especially Carlos Bailón and his work group, who collaborated during the field phase of this project. Thanks also to the crew of the M/V Ocearch, who funded and carried out the sample collection and tagging under permit PC-01-14. J.B.-M. thanks the Charles Darwin Foundation and WWF International for the support provided for the sampling. F.G.-M. and A.T.-Q. thank the Instituto Politécnico Nacional for the fellowships granted through the "Comisión de Operación y Fomento de Actividades Académicas" (COFAA) and the "Estímulo al Desempeño de los Investigadores" (EDI). Finally, D.P.-R. and A.H. thank the Galapagos Science Center for providing the facilities for information processing and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Páez-Rosas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Annex 1

Cumulative trophic diversity curves for all stomachs of T. albacares and A. solandri. Cumulative prey diversity is based on the Shannon-Wiener index (H´) (n = optimum sample size for each species)(PNG 1813 kb)

High resolution image (TIF 1256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Páez-Rosas, D., Galván-Magaña, F., Baque-Menoscal, J. et al. Trophic preferences of three pelagic fish inhabiting the Galapagos Marine Reserve: ecological inferences using multiple analyses. Environ Biol Fish 103, 647–665 (2020). https://doi.org/10.1007/s10641-020-00967-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-020-00967-8

Keywords

Navigation