Skip to main content
Log in

Effect of plunging depth and dwelling time on microstructure and mechanical properties of 6061 aluminum alloy welded by protrusion friction stir spot welding

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The pin tool used in conventional friction stir spot welding creates a keyhole that reduces the surface quality of the welds and has a negative effect on the corrosion resistance and mechanical properties. In the present work, protrusion friction stir spot welding, a simple method that avoids keyhole formation, is applied to weld AA6061 thin sheets with thickness of 1 mm. Tool rotation speed is constant, and dwelling times are set as 4, 6, and 8 s with different plunging depths of 0.1, 0.14, and 0.18 mm. Macrostructure, microstructure, and mechanical examinations are used to indicate the optimum processing conditions. Mechanical properties are affected by the average grain size of SZ and geometric parameters such as the SZ depth, the joint length and area, the joint thickness, and effective thickness of upper sheet of the welded samples. Results indicate the maximum peak load at 8 s-0.18 mm (4495 N) and maximum failure energy at 4 s-0.1 mm (5.5 J) and 8 s-0.18 mm (5.6 J).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Piccinia JM, Svobodab HG (2015) Effect of the tool penetration depth in friction stir spot welding (FSSW) of dissimilar aluminum alloys. Procedia Mater Sci 8:868–877

    Google Scholar 

  2. Leon JS, Jayakumar V (2014) Investigation of mechanical properties of aluminium 6061 alloy friction stir welding. Int J Stud Res Technol Manag 2:140–144

    Google Scholar 

  3. Kah P, Suoranta, J. Martikainen (2011) Joining of sheet metals using different welding processes. Proceedings of 16th International Conference, Mechanika, p 158–163

  4. Gerlich A, Yamamoto M, North TH (2007) Local melting and cracking in Al 7075-T6 and Al 2024-T3 friction stir spot welds. Sci Technol Weld Join 12:472–480

    CAS  Google Scholar 

  5. Bhatt KD, Pillai B, Trivedi AM (2013) Effect of size of tool on peak temperature & viscosity during friction stir welding of AA6061-T6 aluminum alloy using hyperworks. Int J Innov Res Sci Eng Technol 2:914–919

    Google Scholar 

  6. Prangnell PB, Bakavos D (2010) Novel approaches to friction spot welding thin aluminium automotive sheet. Mater Sci Forum 638–642

  7. Bozkurt Y, Salman S (2013) Effect of welding parameters on lap shear tensile properties of dissimilar friction stir spot welded AA 5754-H22 / 2024-T3 joints. Sci Technol Weld Join 18:338–345

    Google Scholar 

  8. Paidar M, Khodabandeh A, Najafi H, Rouh-aghdam AS (2015) An investigation on mechanical and metallurgical properties of 2024-T3 aluminum alloy spot friction welds. Int J Adv Manuf Technol 80:183–197

    Google Scholar 

  9. Sun Y, Fujii H, Zhu S, Guan S (2019) Flat friction stir spot welding of three 6061-T6 aluminum sheets. J Mater Process Technol 264:414–421

    CAS  Google Scholar 

  10. Jonckheere C, De Meester B, Cassiers C, Delhaye M, Simar A (2012) Fracture and mechanical properties of friction stir spot, welds in 6063-T6 aluminum alloy. J Adv Manuf Technol 62:569–575

    Google Scholar 

  11. Venukumar S, Yalagi SG, Muthukumaran S, Kailas SV (2013) Static shear strength and fatigue life of refill friction stir spot welded AA 6061-T6 sheets. Science and Technology of Welding and Joining 19:214–223

    Google Scholar 

  12. Rosendo T, Parra B, Tier MAD, da Silva AAM, dos Santos JF, Strohaecker TR, Alcântara NG (2011) Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy. Mater Des 32(3):1094–1100

    CAS  Google Scholar 

  13. Baek EW, Choi DH, Lee CY, Ahn BW, Yeon YM, Song K, Jung SB (2010) Structure-properties relations in friction stir spot welded low carbon steel sheets for light weight automobile body. Mater Trans 51(2):399–403

    CAS  Google Scholar 

  14. Sun Y, Fujii H, Takaki N, Okitsu Y (2012) Microstructure and mechanical properties of mild steel joints prepared by a flat friction stir spot welding technique. Mater Des 37:384–392

    CAS  Google Scholar 

  15. Venukumar S, Baby B, Muthukumaran S, Kailas SV (2014) Microstructural and mechanical properties of walking friction stir spot welded AA 6061-T6 sheets. Procedia Mater Sci 6:656–665

    CAS  Google Scholar 

  16. Cox CD, Gibson BT, Delapp DR, Strauss AM, Cook GE (2014) A method for double-sided friction stir spot welding. J Manuf Process 16:241–247

    Google Scholar 

  17. Shah PH, Badheka VJ (2019) Friction stir welding of aluminium alloys: an overview of experimental findings-process, variables, development and applications. Proc Inst Mech Eng Pt L J Mater Des Appl 233:1191–1226

  18. AWS (1997) Recommended practices for test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials. ANSI/AWS/SAE/ D8.9–97: Miami

  19. Lee SH, Lee DM, Lee KS (2017) Process optimisation and microstructural evolution of friction stir spot-welded Al6061 joints. Mater Sci Technol 33:719–730

    CAS  Google Scholar 

  20. Kim JR, Ahn EY (2017) Effect of tool geometry and process parameters on mechanical properties of friction stir spot welded dissimilar aluminum alloys. Int J Precis Eng Manuf 18:445–452

    CAS  Google Scholar 

  21. Farmanbar N, Mousavizade SM, Ezatpour HR, Elsa M (2019) AA5052 sheets welded by protrusion friction stir spot welding: high mechanical performance with considering sheets thickness at low dwelling time and tool rotation speed. Proc Inst Mech Eng C J Mech Eng Sci 233:5836–5847

    CAS  Google Scholar 

  22. Shahrabadi A, Mousavizade SM, Ezatpour HR, Pouranvari M (2018) Achieving high mechanical performance in protrusion friction stir spot welding (PFSSW) of DQSK steel compared to other techniques. Materials Research Express 5(10):106519

    Google Scholar 

  23. Farmanbar N, Mousavizade SM, Ezatpour HR (2018) Protrusion friction stir spot welding: a simple novel method to produce dissimilar joints of galvanized steel/aluminum sheets with high mechanical performance. Mater Res Express 6(2):026575

    Google Scholar 

  24. Farmanbar N, Mousavizade SM, Ezatpour HR (2019) Achieving special mechanical properties with considering dwell time of AA5052 sheets welded by a simple novel friction stir spot welding. Mar Struct 65:197–214

    Google Scholar 

  25. Zarghani F, Mousavizade SM, Ezatpour HR, Ebrahimi GR (2018) High mechanical performance of similar Al joints produced by a novel spot friction welding technique. Vacuum 147:172–186

    CAS  Google Scholar 

  26. Tozaki Y, Uematsu Y, Tokaji K (2010) A newly developed tool without probe for friction stir spot welding and its performance. J Mater Process Technol 210:844–851

    CAS  Google Scholar 

  27. Shen Z, Chen Y, Hou JSC, Yang X, Gerlich AP (2014) Influence of processing parameters on microstructure and mechanical performance of refill friction stir spot welded 7075-T6 aluminium alloy. Sci Technol Weld Join 20:48–57

    Google Scholar 

  28. Tozaki Y, Uematsu Y, Tokaji K (2007) Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. Int J Mach Tools Manuf 47:2230–2236

    Google Scholar 

  29. Tran V-X, Pan J, Pan T (2009) Effects of processing time on strengths and failure modes of dissimilar spot friction welds between aluminum 5754-O and 7075-T6 sheets. J Mater Process Technol 209:3724–3739

    CAS  Google Scholar 

  30. Kutz M (2002) Handbook of materials selection. Wiley

  31. Badarinarayan H, Yang Q, Zhu S (2009) Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy. Int J Mach Tool Manu 49:142–148

    Google Scholar 

  32. Choi DH, Ahn BW, Lee CY, Yeon YM, Song K, Jung SB (2010) Effect of pin shapes on joint characteristics of friction stir spot welded AA5J32 sheet. Mater Trans 51:1028–1032

    CAS  Google Scholar 

  33. Dourandish S, Mousavizade SM, Ezatpour HR, Ebrahimi GR (2018) Microstructure, mechanical properties and failure behaviour of protrusion friction stir spot welded 2024 aluminium alloy sheets. Sci Technol Weld Join 23(4):295–307

    CAS  Google Scholar 

  34. Zhang Z, Yang X, Zhang J, Zhou G, Xu X, Zou B (2011) Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater Des 32(8–9):4461–4470

    CAS  Google Scholar 

  35. Sun N, Yin YH, Gerlich AP, North TH (2009) Tool design and stir zone grain size in AZ31 friction stir spot welds. Sci Technol Weld Join 14(8):747–752

    CAS  Google Scholar 

  36. Fujimoto M, Koga S, Abe N, Sato YS, Kokawa H (2008) Microstructural analysis of stir zone of Al alloy produced by friction stir spot welding. Sci Technol Weld Join 13(7):663–670

    CAS  Google Scholar 

  37. Miyagawa K, Tsubaki M (2009) Spot welding between aluminium alloy and low-carbon steel by friction stirring. Weld Int 23(8):42–47

    Google Scholar 

  38. Sun Y, Fujii H, Takaki N, Okitsu Y (2013) Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Mater Des 47:350–357

    CAS  Google Scholar 

  39. Yamamoto M, Gerlich A, North TH, Shinozaki K (2008) Cracking and local melting in mg-alloy and al-alloy during friction stir spot welding. Weld World 52(9–10):38–46

    CAS  Google Scholar 

  40. Yuan W, Mishra RS, Webb S, Chen YL (2011) Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. Mater Process Technol 2011(6):972–977

    Google Scholar 

  41. Wang D-A, Lee S-C (2007) Microstructures and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets. J Mater Process Technol 186(1–3):291–297

    CAS  Google Scholar 

  42. Fujimoto M, Watanabe D, Abe N, Yutaka SS, Kokawa H (2010) Effects of process time and thread on tensile shear strength of Al alloy lap joint produced by friction stir spot welding. Weld Int 24(3):169–175

    Google Scholar 

  43. Sun Y, Morisada Y, Fujii H, Tsuji N (2018) Ultrafine grained structure and improved mechanical properties of low temperature friction stir spot welded 6061-T6 Al alloys. Mater Charact 135:124–133

    CAS  Google Scholar 

  44. Yazdi SR, Beidokhti B, Haddad-Sabzevar M (2019) Pinless tool for FSSW of AA 6061-T6 aluminum alloy. J Mater Process Technol 267:44–51

    CAS  Google Scholar 

  45. Shen Z, Yang X, Yang S, Zhang Z, Yin Y (2014) Microstructure and mechanical properties of friction spot welded 6061-T4 aluminum alloy. Mater Des 54:766–778

    CAS  Google Scholar 

  46. Yoon S-O, Kang M-S, Kwon Y-J, Hong S-T, Park D-H, Lee K-H, Lim C-Y, Seo J-D (2012) Influences of tool plunge speed and tool plunge depth on friction spot joining of AA5454-O aluminum alloy plates with different thicknesses. Trans Nonferrous Metals Soc China 22:s629–s633

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. Mousavizade or H. R. Ezatpour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareie, O., Mousavizade, S.M., Ezatpour, H.R. et al. Effect of plunging depth and dwelling time on microstructure and mechanical properties of 6061 aluminum alloy welded by protrusion friction stir spot welding. Weld World 64, 785–805 (2020). https://doi.org/10.1007/s40194-020-00884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-00884-5

Keywords

Navigation