Skip to main content
Log in

The formation mechanism of aqueous hydrogen peroxide in a plasma-liquid system with liquid as the anode

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigate the formation of aqueous hydrogen peroxide (H2O2aq) in a DC discharge plasma-liquid system with liquid as the anode. The theoretical analysis and experimental results show that the H2O2aq formation process is mostly controlled by the aqueous electron-induced reactions in the liquid zone directly affected by the plasma. It is shown that the low H2O2aq yield in this system is caused by quenching the dissolved OH radicals through aqueous electrons and alkalization in the plasma-directly-affected liquid zone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Muruganandham, M. Swaminathan, Dyes Pigm. 62, 269 (2004)

    Article  Google Scholar 

  2. M.Y. Ghaly, G. Härtel, R. Mayer, R. Haseneder, Waste Manage. (Oxford) 21, 41 (2001)

    Article  Google Scholar 

  3. E.J. Rosenfeldt, K.G. Linden, S. Canonica, U. Von Gunten, Water Res. 40, 3695 (2006)

    Article  Google Scholar 

  4. M. Hartmann, S. Kullmann, H. Keller, J. Mater. Chem. 20, 9002 (2010)

    Article  Google Scholar 

  5. K. Dutta, S. Mukhopadhyay, S. Bhattacharjee, B. Chaudhuri, J. Hazard. Mater. 84, 57 (2001)

    Article  Google Scholar 

  6. K. Dutta, S. Bhattacharjee, B. Chaudhuri, S. Mukhopadhyay, J. Environ. Sci. Health. Part A 38, 1311 (2003)

    Article  Google Scholar 

  7. K. Barbusiński, Ecol. Chem. Eng. S 16, 347 (2009)

    Google Scholar 

  8. B. He, X. Gong, X. Wang, J. Li, Q. Xiong, Q. Chen, Q.H. Liu, J. Electrochem. Soc. 165, E1 (2018)

    Article  Google Scholar 

  9. P. Lukes, E. Dolezalova, I. Sisrova, M. Clupek, Plasma Sources Sci. Technol. 23, 015019 (2014)

    Article  ADS  Google Scholar 

  10. B.R. Locke, K.-Y. Shih, Plasma Sources Sci. Technol. 20, 034006 (2011)

    Article  ADS  Google Scholar 

  11. D.-X. Liu, P. Bruggeman, F. Iza, M.-Z. Rong, M.G. Kong, Plasma Sources Sci. Technol. 19, 025018 (2010)

    Article  ADS  Google Scholar 

  12. C. Vasko, D.-X. Liu, E. Van Veldhuizen, F. Iza, P. Bruggeman, Plasma Chem. Plasma Process. 34, 1081 (2014)

    Article  Google Scholar 

  13. P. Attri, Y.H. Kim, D.H. Park, J.H. Park, Y.J. Hong, H.S. Uhm, K.-N. Kim, A. Fridman, E.H. Choi, Sci. Rep. 5, 9332 (2015)

    Article  Google Scholar 

  14. W. Tian, M.J. Kushner, J. Phys. D: Appl. Phys. 47, 165201 (2014)

    Article  ADS  Google Scholar 

  15. M.M. Hefny, C. Pattyn, P. Lukes, J. Benedikt, J. Phys. D: Appl. Phys. 49, 404002 (2016)

    Article  Google Scholar 

  16. A. Klemenc, Z. Phys, Chem. 130, 378 (1927)

    Google Scholar 

  17. A. Klemenc, Z. Elektrochem, Angew. Phys. Chem. 37, 742 (1931)

    Google Scholar 

  18. A. Klemenc, Monatsh. Chem. Verw. Teile Anderer Wiss. 76, 38 (1946)

    Article  Google Scholar 

  19. A. Klemenc, Monatsh. Chem. Verw. Teile Anderer Wiss. 78, 243 (1948)

    Article  Google Scholar 

  20. A. Klemenc, Monatsh. Chem. Verw. Teile Anderer Wiss. 81, 122 (1950)

    Article  Google Scholar 

  21. A. Klemenc, Chimia 6, 177 (1952)

    Google Scholar 

  22. A. Klemenc, R. Eder, Z. Phys, Chem. 179, 1 (1937)

    Google Scholar 

  23. A. Klemenc, G. Ofner, Z. Elektrochem, Ber. Bunsen. Phys. Chem. 57, 615 (1953)

    Google Scholar 

  24. A. Hickling, J. Linacre, J. Chem. Soc. 1954, 711 (1954)

    Article  Google Scholar 

  25. A. Hickling, M. Ingram, Trans. Faraday Soc. 60, 783 (1964)

    Article  Google Scholar 

  26. A. Hickling, M. Ingram, J. Electroanal. Chem. 8, 65 (1964)

    Google Scholar 

  27. A. Hickling, in Modern Aspects Electrochemistry No. 6 (Springer, 1971), p. 329

  28. A. Denaro, A. Hickling, J. Electrochem. Soc. 105, 265 (1958)

    Article  Google Scholar 

  29. R. Davies, A. Hickling, J. Chem. Soc. 1952, 3595 (1952)

    Article  Google Scholar 

  30. N. Takeuchi, N. Ishibashi, Plasma Sources Sci. Technol. 27, 045010 (2018)

    Article  ADS  Google Scholar 

  31. K. Tachibana, T. Nakamura, Jpn. J. Appl. Phys. 58, 046001 (2019)

    Article  ADS  Google Scholar 

  32. J. Liu, B. He, Q. Chen, J. Li, Q. Xiong, G. Yue, X. Zhang, S. Yang, H. Liu, Q.H. Liu, Sci. Rep. 6, 38454 (2016)

    Article  ADS  Google Scholar 

  33. T. Kaneko, Q. Chen, T. Harada, R. Hatakeyama, Plasma Sources Sci. Technol. 20, 034014 (2011)

    Article  ADS  Google Scholar 

  34. L. Li, A. Nikiforov, Q. Xiong, X. Lu, L. Taghizadeh, C. Leys, J. Phys. D: Appl. Phys. 45, 125201 (2012)

    Article  ADS  Google Scholar 

  35. Q. Xiong, Z. Yang, P.J. Bruggeman, J. Phys. D: Appl. Phys. 48, 424008 (2015)

    Article  ADS  Google Scholar 

  36. Z. Chen, D. Liu, C. Chen, D. Xu, Z. Liu, W. Xia, M. Rong, M.G. Kong, J. Phys. D: Appl. Phys. 51, 325201 (2018)

    Article  ADS  Google Scholar 

  37. X. He, J. Lin, B. He, L. Xu, J. Li, Q. Chen, Q. Xiong, Q.H. Liu, Plasma Sources Sci. Technol. 27, 085010 (2018)

    Article  ADS  Google Scholar 

  38. B. He, Y. Ma, X. Gong, Z. Long, J. Li, Q. Xiong, H. Liu, Q. Chen, X. Zhang, S. Yang, J. Phys. D: Appl. Phys. 50, 445207 (2017)

    Article  ADS  Google Scholar 

  39. P. Rumbach, D.M. Bartels, R.M. Sankaran, D.B. Go, Nat. Commun. 6, 7248 (2015)

    Article  ADS  Google Scholar 

  40. P. Rumbach, D.M. Bartels, R.M. Sankaran, D.B. Go, J. Phys. D: Appl. Phys. 48, 424001 (2015)

    Article  Google Scholar 

  41. R. Gopalakrishnan, E. Kawamura, A. Lichtenberg, M. Lieberman, D. Graves, J. Phys. D: Appl. Phys. 49, 295205 (2016)

    Article  Google Scholar 

  42. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988)

    Article  ADS  Google Scholar 

  43. P. Rumbach, N. Griggs, R.M. Sankaran, D.B. Go, IEEE Trans. Plasma Sci. 42, 2610 (2014)

    Article  ADS  Google Scholar 

  44. Q. Chen, J. Li, K. Saito, H. Shirai, J. Phys. D: Appl. Phys. 41, 175212 (2008)

    Article  ADS  Google Scholar 

  45. Q. Chen, H. Shirai, Eur. Phys. J. D 66,) 161 (2012

    Article  ADS  Google Scholar 

  46. P. Rumbach, M. Witzke, R.M. Sankaran, D.B. Go, J. Am. Chem. Soc. 135, 16264 (2013)

    Article  Google Scholar 

  47. A.N. Ivanov, D.A. Shutov, A.S. Manukyan, V.V. Rybkin, Plasma Chem. Plasma Process. 39, 63 (2019)

    Article  Google Scholar 

  48. D.C. Walker, Quarterly, Rev. Chem. Soc. 21 (1967) 79.

    Article  Google Scholar 

  49. R. Zhou, R. Zhou, K. Prasad, Z. Fang, R. Speight, K. Bazaka, K. Ostrikov, Green Chem. 20, 5276 (2018)

    Article  Google Scholar 

  50. X. Dai, K. Bazaka, D.J. Richard, E.R.W. Thompson, K.K. Ostrikov, Trends Biotechnol. 36, 1183 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material in the form of one zip file available from the Journal web page at https://doi.org/10.1140/epjd/e2020-100371-2

Electronic supplementary material

Supplementary Material

ZIP file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., He, X., Chen, Q. et al. The formation mechanism of aqueous hydrogen peroxide in a plasma-liquid system with liquid as the anode. Eur. Phys. J. D 74, 80 (2020). https://doi.org/10.1140/epjd/e2020-100371-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100371-2

Keywords

Navigation