Skip to main content
Log in

Low-pressure DC breakdown in alcohol vapours

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The results covered in this paper provide breakdown data represented by Paschen curves for methanol, isopropanol and n-butanol, along with the corresponding axial profiles of emission in Townsend regime of the discharge and including the optical emission spectra. Paschen curves were recorded in the range of pd (pressure x electrode gap) from 0.10 to 3.00 Torr cm. The optical emission spectra (OES) are recorded for wavelength range from 300 to 900 nm, for discharges in all studied alcohols. The recorded spectra enabled identification of species that participate in these discharges. All three alcohols exhibit emission from excited radicals OH (at 306.4 nm), CH (at 431.2 nm) and Hα (at 656.4 nm) produced mostly in dissociative excitation by electrons. Recorded profiles of emission enabled us to identify conditions where processes induced by heavy particles (ions and fast neutrals) are dominant in inducing emission from the discharge.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Petitpas, J.D. Rollier, A. Darmonb, J. Gonzalez-Aguilar, R. Metkemeijer, L. Fulcheri, Int. J. Hydrogen Energy 32, 2848 (2007)

    Article  Google Scholar 

  2. M.G. Sobacchi, A.V. Saveliev, A.A. Fridman, L.A. Kennedy, S. Ahmed, T. Krause, Int. J. Hydrogen Energy 27, 635 (2002)

    Article  Google Scholar 

  3. F. Chen, X. Huang, D. Cheng, X. Zhan, Int. J. Hydrogen Energy 39, 9036 (2014)

    Article  Google Scholar 

  4. B. Wang, B. Sun, X. Zhu, Z. Yan, Y. Liu, H. Liu, Q. Liu, Int. J. Hydrogen Energy 41, 7280 (2016)

    Article  Google Scholar 

  5. R. Dillon, S. Srinivasan, A.S. Aricò, V. Antonucci, J. Power Sources 127, 112 (2004)

    Article  ADS  Google Scholar 

  6. M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Int. J. Hydrogen Energy 38, 9438 (2013)

    Article  Google Scholar 

  7. J. Mizeraczyk, M. Jasinski, Eur. Phys. J. Appl. Phys. 75, 24702 (2016)

    Article  ADS  Google Scholar 

  8. D.M. Fadzillah, S.K. Kamarudin, M.A. Zainoodin, M.S. Masdar, Int. J. Hydrogen Energy 44, 3031 (2019)

    Article  Google Scholar 

  9. P. Joghee, J. Nekuda Malik, S. Pylypenko, R. O’Hayre, MRS Energy Sustainability 2, 1 (2015)

    Article  Google Scholar 

  10. Q. Wang, X. Wang, Z. Chai, W. Hu, Chem. Soc. Rev. 42, 8821 (2013)

    Article  Google Scholar 

  11. S. Maruyama, R. Kojimaa, Y. Miyauchia, S. Chiashia, M. Kohnob, Chem. Phys. Lett. 360, 229 (2002)

    Article  ADS  Google Scholar 

  12. M. Matsushima, M. Noda, T. Yoshida, H. Kato, G. Kalita, T. Kizuki, H. Uchida, M. Umeno, K. Wakita, J. Appl. Phys. 113, 114304 (2013)

    Article  ADS  Google Scholar 

  13. A. Ando, K. Ishikawa, H. Kondo, T. Tsutsumi, K. Takeda, T. Ohta, M. Ito, M. Hiramatsu, M. Sekine, M. Hori, Japanese J. Appl. Phys. 57, 026201 (2018)

    Article  ADS  Google Scholar 

  14. T. Hagino, H. Kondo, K. Ishikawa, H. Kano, M. Sekine, M. Hori, Appl. Phys. Express 5, 035101 (2012)

    Article  ADS  Google Scholar 

  15. N.M. Santhosh, G. Filipič, E. Tatarova, O. Baranov, H. Kondo, M. Sekine, M. Hori, K.K. Ostrikov, U. Cvelbar, Micromachines 9, 565 (2018)

    Article  Google Scholar 

  16. G. Charpak, F. Sauli, Nucl. Instrum. Methods 162, 405 (1979)

    Article  ADS  Google Scholar 

  17. S.H. Liebson, Phys. Rev. 72, 602 (1947)

    Article  ADS  Google Scholar 

  18. D.J. Grey, R.K. Sood, R.K. Manchanda, Nucl. Instrum. Methods A 527, 493 (2004)

    Article  ADS  Google Scholar 

  19. D. Bošnjaković, Z.Lj. Petrović, R.D. White, S. Dujko, J. Phys. D: Appl. Phys. 47, 435203 (2014)

    Article  ADS  Google Scholar 

  20. J. Va’vra, Nucl. Instrum. Methods Phys. Res. 515, 1 (2003)

    Article  ADS  Google Scholar 

  21. T.L. Cottrell, I.C. Walker, Trans. Faraday Soc. 61, 1585 (1965)

    Article  Google Scholar 

  22. D. Marić, M. Radmilović-Radenović, Z.Lj. Petrović, Eur. Phys. J. D 35, 313 (2005)

    Article  ADS  Google Scholar 

  23. P.J. Bruggeman, M. Kushner, B. Locke, H. Gardeniers, B. Graham, D. Graves, R. Hofman-Caris, D. Marić, J. Reid, E. Ceriani, D. Fernandez Rivas, J. Foster, S. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, F. Krcma, J. Kolb, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E. Neyts, J. Pawlat, Z.Lj. Petrović, R. Pflieger, S. Reuter, D. Schram, S. Schroeter, M. Shiraiwa, B. Tarabova, P. Tsai, J. Verlet, T. von Woedtke, K. Wilson, K. Yasui, G. Zvereva, Plasma Sources Sci. Technol. 25, 053002 (2016)

    Article  ADS  Google Scholar 

  24. A.V. Phelps, Z.Lj. Petrović, Plasma Sources Sci. Technol. 8, R21 (1999)

    Article  ADS  Google Scholar 

  25. D. Marić, N. Škoro, P.D. Maguire, C.M.O. Mahony, G. Malović, Z.Lj. Petrović, Plasma Sources Sci. Technol. 21, 035016 (2012)

    Article  ADS  Google Scholar 

  26. A.V. Phelps, B.M. Jelenković, Phys. Rev. A 38, 2975 (1988)

    Article  ADS  Google Scholar 

  27. J. Sivoš, N. Škoro, D. Marić, G. Malović, Z.Lj. Petrović, J. Phys. D: Appl. Phys. 48, 424011 (2015)

    Article  ADS  Google Scholar 

  28. N. Škoro, D. Marić, G. Malović, W.G. Graham, Z.Lj. Petrović, Phys. Rev. E 84, 055401 (2011)

    Article  ADS  Google Scholar 

  29. A. von Engel, inIonized Gases, 2nd edn. (Clarendon Press, Oxford, 1965)

  30. Y.P. Raizer, inGas Discharge Physics (Springer, Berlin, Germany, 1991)

  31. J. Sivoš, D. Marić, N. Škoro, G. Malović, Z.Lj. Petrović, Plasma Sources Sci. Technol. 28, 055011 (2019)

    Article  ADS  Google Scholar 

  32. D.A. Scott, A.V. Phelps, Phys. Rev. A 43, 3043 (1991)

    Article  ADS  Google Scholar 

  33. D. Marić, M. Savić, J. Sivoš, N. Škoro, M. Radmilović-Radjenović, G. Malović, Z.Lj. Petrović, Eur. Phys. J. D 68, 155 (2014)

    Article  ADS  Google Scholar 

  34. V. Stojanović, N. Škoro, J. Sivoš, G. Malović, D. Marić, Z.Lj. Petrović, Modeling emission from water vapor DC discharge at low Pressure, in 28th Summer School and International Symposium on the Physics of Ionized Gases (SPIG) August 29–September 2, 2016, Belgrade, Serbia (2016), pp. 155–331, http://www.spig2016.ipb.ac.rs/spig2016-book-online.pdf

  35. R.C. Weast, in Handbook of Chemistry and Physics. 51st edn. (Chemical Rubber Co, Cleveland, Ohio, 1970)

  36. D. Marić, G. Malović, Z.Lj. Petrović, Plasma Sources Sci. Technol. 18, 034009 (2009)

    Article  ADS  Google Scholar 

  37. Z.Lj. Petrović, A.V. Phelps, Phys. Rev. E 56, 5920 (1997)

    Article  ADS  Google Scholar 

  38. Z.Lj. Petrović, N. Škoro, D. Marić, C.M.O. Mahony, P.D. Maguire, M. Radmilović-Radjenović, G. Malović, J. Phys. D: Appl. Phys. 41, 194002 (2008)

    Article  ADS  Google Scholar 

  39. T. Kuschel, I. Stefanović, N. Škoro, D. Marić, G. Malović, J. Winter, Z.Lj. Petrović, IEEE Trans. Plasma Sci. 39, 2692 (2011)

    Article  ADS  Google Scholar 

  40. D. Marić, N. Škoro, G. Malović, Z.Lj. Petrović, V. Mihailov, R. Djulgerova, J. Phys.: Conf. Ser. 162, 012007 (2009)

    Google Scholar 

  41. I. Stefanovi, T. Kuschel, N. Škoro, D. Marić, Z.Lj. Petrović, J. Winter, J. Appl. Phys. 110, 083310 (2011)

    Article  ADS  Google Scholar 

  42. A.V. Phelps, Z.Lj. Petrović, B.M. Jelenković, Phys. Rev. E 47, 2825 (1993)

    Article  ADS  Google Scholar 

  43. Z.Lj. Petrović, A.V. Phelps, Phys. Rev. E 47, 2806 (1993)

    Article  ADS  Google Scholar 

  44. J.H. Ingold, Anatomy of the discharge, in Gaseous Electronics: Electrical, edited by M. Hirsh, H.J. Oskam (Academic Press, New York, 1978), Vol. 1

  45. Z.Lj. Petrović, A.V. Phelps, Phys. Rev. E 80, 016408 (2009)

    Article  ADS  Google Scholar 

  46. D. Marić, K. Kutasi, G. Malović, Z. Donkó, Z.Lj. Petrović, Eur. Phys. J. D 21, 73 (2002)

    Article  ADS  Google Scholar 

  47. Z.Lj. Petrović, Z. Donkó, D. Marić, G. Malović, S. Živanov, IEEE Trans. Plasma Sci. 30, 136 (2002)

    Article  ADS  Google Scholar 

  48. D. Marić, P. Hartmann, G. Malović, Z. Donkó, Z.Lj. Petrović, J. Phys. D: Appl. Phys. 36, 2639 (2003)

    Article  ADS  Google Scholar 

  49. Z.Lj. Petrović, B.M. Jelenković, A.V. Phelps, Phys. Rev. Lett. 68, 325 (1992)

    Article  ADS  Google Scholar 

  50. Z.Lj. Petrović, V. Stojanović, J. Vacuum Sci. Technol. A 16, 329 (1998)

    Article  ADS  Google Scholar 

  51. D.S. Levko, A.N. Tsymbalyuk, A.I. Shchedrin, Plasma Phys. Rep. 38, 913 (2012)

    Article  ADS  Google Scholar 

  52. F. Poncin-Epaillard, M. Aouinti, Plasmas Polym. 7, 1 (2002)

    Article  Google Scholar 

  53. A. Yanguas-Gil, J.L. Hueso, J. Cotrino, A. Caballero, A.R. González-Elipe, Appl. Phys. Lett. 85, 4004 (2004)

    Article  ADS  Google Scholar 

  54. P.G. Reyes, A. Gómez, H. Martnez, O. Flores, C. Torres, J. Vergara, IEEE Trans. Plasma Sci. 44, 2995 (2016)

    Article  ADS  Google Scholar 

  55. D.E. Donohue, J.A. Schiavone, R.S. Freund, J. Chem. Phys. 67, 769 (1977)

    Article  ADS  Google Scholar 

  56. A.G. Gaydon, in The Spectroscopy of Flames. 2nd edn. (Chapman and Hall, London, United Kingdom, 1974)

  57. F. Liu, W. Wang, S. Wang, W. Zheng, Y. Wang, J. Electrostat. 65, 445 (2007)

    Article  Google Scholar 

  58. R. Stocker, J. Karl, D. Hein, in Proc. PSFVIP-3 in Maui, Hawaii, 2001, (University of Hawaii Maui College, Maui, 2001, F3003, pp. 1–16

  59. J. Tennyson, S. Rahimi, C. Hill, L. Tse, A. Vibhakar, D. Akello-Egwel, D.B. Brown, A. Dzarasova, J.R. Hamilton, D. Jaksch, S. Mohr, K. Wren-Little, J. Bruckmeier, A. Agarwal, K. Bartschat, A. Bogaerts, J.P. Booth, M.J. Goeckner, K. Hassouni, Y. Itikawa, B.J. Braams, E. Krishnakumar, A. Laricchiuta, N.J. Mason, S. Pandey, Z.Lj. Petrovic, Yi.-K. Pu, A. Ranjan, S. Rauf, J. Schulze, M.M. Turner, P. Ventzek, J.C. Whitehead, J.-S. Yoon, Plasma Sources Sci. Technol. 26, 055014 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Sivoš.

Additional information

Contribution to the Topical Issue “Low-Energy Positron and Positronium Physics and Electron-Molecule Collisions and Swarms (POSMOL 2019)”, edited by Michael Brunger, David Cassidy, Saša Dujko, Dragana Marić, Joan Marler, James Sullivan, Juraj Fedor

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivoš, J., Marić, D., Malović, G. et al. Low-pressure DC breakdown in alcohol vapours. Eur. Phys. J. D 74, 64 (2020). https://doi.org/10.1140/epjd/e2020-100540-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100540-3

Navigation