Skip to main content
Log in

On the indivisibility of derived Kato’s Euler systems and the main conjecture for modular forms

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We provide a simple and efficient numerical criterion to verify the Iwasawa main conjecture and the indivisibility of derived Kato’s Euler systems for modular forms of weight two at any good prime under mild assumptions. In the ordinary case, the criterion works for all members of a Hida family once and for all. The key ingredient is the explicit computation of the integral image of the derived Kato’s Euler systems under the dual exponential map. We provide explicit new examples at the end. This work does not appeal to the Eisenstein congruence method at all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burungale, A., Castella, F., Kim, C.-H.: A proof of Perrin–Riou’s Heegner point main conjecture. Submitted arXiv:1908.09512

  2. Bertolini, M., Darmon, H.: Iwasawa’s main conjectures for elliptic curves over anticyclotomic \(\mathbb{Z}_p\)-extensions. Ann. Math. (2) 162(1), 1–64 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bloch, S., Kato, K.: \(L\)-functions and Tamagawa numbers of motives. In: Cartier, P., Illusie, L., Katz, N.M., Laumon, G., Manin, Y., Ribet, K.A. (eds.) The Grothendieck Festschrift. Progress in Mathematics, vol. 86, vol. I, pp. 333–400. Birkhäuser, Boston (1990)

    Google Scholar 

  4. Büyükboduk, K.: Tamagawa defect of Euler systems. J. Number Theory 129(2), 402–417 (2009)

    Article  MathSciNet  Google Scholar 

  5. Büyükboduk, K.: \(\Lambda \)-adic Kolyvagin systems. Int. Math. Res. Not. IMRN 14, 3141–3206 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Castella, F., Çiperiani, M., Skinner, C., Sprung, F.: On the Iwasawa main conjectures for modular forms at non-ordinary primes. Preprint arXiv:1804.10993

  7. Delbourgo, D.: Elliptic Curves and Big Galois Representations. London Mathematical Society Lecture Note Series, vol. 356. Cambridge University Press, Cambridge (2008)

  8. Diamond, F., Taylor, R.: Non-optimal levels of mod \(\ell \) modular representations. Invent. Math. 115, 435–462 (1994)

    Article  MathSciNet  Google Scholar 

  9. Emerton, M., Pollack, R., Weston, T.: Variation of Iwasawa invariants in Hida families. Invent. Math. 163(3), 523–580 (2006)

    Article  MathSciNet  Google Scholar 

  10. Fouquet, O.: The equivariant Tamagawa number conjecture for modular motives with coefficients in Hecke algebras. Preprint. arXiv:1604.06411

  11. Greenberg, R., Iovita, A., Pollack, R.: On the Iwasawa invariants for elliptic curves with supersingular reduction (in preparation) (2008)

  12. Greenberg, R.: Iwasawa theory for \(p\)-adic representations. In: Coates, J., Greenberg, R., Mazur, B., Satake, I. (eds.) Algebraic Number Theory–In Honor of Kenkichi Iwasawa. Advanced Studies in Pure Mathematics, pp. 97–137. Academic Press, London (1989)

    Chapter  Google Scholar 

  13. Greenberg, Ralph: Iwasawa theory for elliptic curves. In: Viola, C. (ed.) Arithmetic theory of elliptic curves (Cetraro, 1997) (Berlin). Lecture Notes in Math., vol. 1716, Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, Springer, 1999, Lectures from the 3rd C.I.M.E. Session held in Cetraro, July 12–19, pp. 51–144 (1997)

  14. Grigorov, G.T.: Kato’s Euler systems and the main conjecture. Ph.D. thesis, Harvard (2005) (under the supervision of Richard Taylor)

  15. Greenberg, R., Vatsal, V.: On the Iwasawa invariants of elliptic curves. Invent. Math. 142(1), 17–63 (2000)

    Article  MathSciNet  Google Scholar 

  16. Hatley, J., Lei, A.: Arithmetic properties of signed Selmer groups at non-ordinary primes. Ann. Inst. Fourier (Grenoble) 69(3), 1259–1294 (2019)

    Article  MathSciNet  Google Scholar 

  17. Kato, K.: Lectures on the approach to Iwasawa theory for Hasse–Weil \(L\)-functions via B \(_{{\rm dR}}\). In: Ballico, E. (ed.) Part I, Arithmetic Algebraic Geometry (Heidelberg). Lecture Notes in Mathematics, vol. 1553, Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, Springer, 1993, Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Trento, Italy, June 24–July 2, pp. 50–163 (1991)

  18. Kato, K.: \(p\)-adic Hodge theory and values of zeta functions of modular forms. Astérisque 295, 117–290 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Kim, B.D.: The Iwasawa invariants of the plus/minus Selmer groups. Asian J. Math. 13(2), 181–190 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kim, C.-H., Lee, J., Ponsinet, G.: On the Iwasawa invariants of Kato’s zeta elements for modular forms. Submitted arXiv:1909.01764

  21. Kim, C.-H., Nakamura, K.: Remarks on Kato’s Euler systems for elliptic curves with additive reduction. J. Number Theory 210, 249–279 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kim, C.-H., Ota, K.: On the quantitative variation of congruence ideals and integral periods of modular forms. Submitted arXiv:1905.02926

  23. Kobayashi, S.: Iwasawa theory for elliptic curves at supersingular primes. Invent. Math. 152(1), 1–36 (2003)

    Article  MathSciNet  Google Scholar 

  24. Kolyvagin, V.: On the structure of Selmer groups. Math. Ann. 291(2), 253–259 (1991)

    Article  MathSciNet  Google Scholar 

  25. Kurihara, M.: On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction I. Invent. Math. 149, 195–224 (2002)

    Article  MathSciNet  Google Scholar 

  26. Kurihara, M.: Refined Iwasawa theory for \(p\)-adic representations and the structure of Selmer groups. Münst. J. Math. 7(1), 149–223 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Kurihara, M.: The structure of Selmer groups of elliptic curves and modular symbols. In: Bouganis, T., Venjakob, O. (eds.) Iwasawa Theory 2012: State of the Art and Recent Advances. Contributions in Mathematical and Computational Sciences, vol. 7, pp. 317–356. Springer, Berlin (2014)

    Chapter  Google Scholar 

  28. Mazur, B., Rubin, K.: Kolyvagin Systems. Memoirs of American Mathematical Society, vol. 168. American Mathematical Society, Philadelphia (2004)

    Google Scholar 

  29. Ochiai, T.: Iwasawa main conjecture for \(p\)-adic families of elliptic modular cuspforms. Preprint arXiv:1802.06427

  30. Ochiai, T.: On the two-variable Iwasawa main conjecture. Compos. Math. 142, 1157–1200 (2006)

    Article  MathSciNet  Google Scholar 

  31. Ota, K.: Kato’s Euler system and the Mazur–Tate refined conjecture of BSD type. Am. J. Math. 140(2), 495–542 (2018)

    Article  MathSciNet  Google Scholar 

  32. Pollack, R.: On the \(p\)-adic \(L\)-function of a modular form at a supersingular prime. Duke Math. J. 118(3), 523–558 (2003)

    Article  MathSciNet  Google Scholar 

  33. Perrin-Riou, B.: \(p\)-Adic \(L\)-Functions and \(p\)-Adic Representations, SMF/AMS Texts and Monographs, vol. 3. American Mathematical Society, Philadelphia (2000). (Translated by Leila Schneps)

    MATH  Google Scholar 

  34. Pollack, R., Rubin, K.: The main conjecture for CM elliptic curves at supersingular primes. Ann. Math. (2) 159(1), 447–464 (2004)

    Article  MathSciNet  Google Scholar 

  35. Pollack, R., Weston, T.: On anticyclotomic \(\mu \)-invariants of modular forms. Compos. Math. 147, 1353–1381 (2011)

    Article  MathSciNet  Google Scholar 

  36. Rohrlich, D.: On \(L\)-functions of elliptic curves and cyclotomic towers. Invent. Math. 75, 409–423 (1984)

    Article  MathSciNet  Google Scholar 

  37. Ribet, K., Stein, W.: Lectures on Serre’s conjectures. In: Conrad, B., Rubin, K. (eds.) Arithmetic Algebraic Geometry. IAS/Park City Mathematics Series, vol. 9, pp. 143–232. AMS, Philadelphia (2001)

    Chapter  Google Scholar 

  38. Rubin, K.: Euler systems and modular elliptic curves. In: Scholl, A., Taylor, R. (eds.) Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996). London Mathematical Society. Lecture Note Series, vol. 254, pp. 351–367. Cambridge University Press, Cambridge (1998)

    Chapter  Google Scholar 

  39. Rubin, K.: Euler Systems. Annals of Mathematics Studies, vol. 147. Princeton University Press, Princeton (2000)

    Book  Google Scholar 

  40. Skinner, C.: Multiplicative reduction and the cyclotomic main conjecture for \(\text{ GL }_2\). Pac. J. Math. 283(1), 171–200 (2016)

    Article  Google Scholar 

  41. Sprung, F.: The Iwasawa main conjecture for elliptic curves at odd supersingular primes. Preprint, arXiv:1610.10017

  42. Skinner, C., Urban, E.: The Iwasawa main conjectures for \(\text{ GL }_2\). Invent. Math. 195(1), 1–277 (2014)

    Article  MathSciNet  Google Scholar 

  43. The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.7) (2019). http://www.sagemath.org

  44. The LMFDB Collaboration, The \(L\)-functions and modular forms database. http://www.lmfdb.org

  45. Vatsal, V.: Integral periods for modular forms. Ann. Math. Québec 37, 109–128 (2013)

    Article  MathSciNet  Google Scholar 

  46. Wan, X.: Iwasawa main conjecture for non-ordinary modular forms. Preprint (2020). arXiv:1607.07729

  47. Wan, X.: Iwasawa main conjecture for supersingular elliptic curves and BSD conjecture. Preprint (2019). arXiv:1411.6352

  48. Wan, X.: The Iwasawa main conjecture for Hilbert modular forms. Forum Math. Sigma 3, e18 (2015)

    Article  MathSciNet  Google Scholar 

  49. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141, 443–551 (1995)

    Article  MathSciNet  Google Scholar 

  50. Williams, S.R.: Mod \(p\) \(L\)-functions and analytic Kolyvagin systems. Ph.D. thesis, Harvard (2001) (under the supervision of Richard Taylor)

  51. Zhang, W.: Selmer groups and the indivisibility of Heegner points. Camb. J. Math. 2(2), 191–253 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project grew out from C.K.’s year-long discussion with Karl Rubin when he was at UC Irvine. C.K. heartily thanks Liang Xiao and Kâzim Büyükboduk for guiding him to study Kato’s Euler systems and for extremely helpful suggestions and strong encouragement, respectively. C.K. learned many details of Kato’s Euler systems from Kentaro Nakamura and Shanwen Wang during “an explicit week” at KIAS. C.K. also greatly appreciates Masato Kurihara’s constant encouragement and thanks him for pointing out the relation of this work with [27] and valuable comments. C.K. thanks Ashay Burungale pointing out the analogy with Heegner points; Keunyoung Jeong for figuring out some computation in Sect. 5 together; Kazuto Ota for pointing out the non-ordinary generalization; Olivier Fouquet, Minhyong Kim, Robert Pollack, Tadashi Ochiai, and Haining Wang for the helpful discussion and encouragement. C.K. appreciates the generous hospitality of Ulsan National Institute of Science and Technology (UNIST), Keio University, and Shanghai Center for Mathematical Sciences during visits. C.K. was partially supported by a KIAS Individual Grant (SP054102) via the Center for Mathematical Challenges at Korea Institute for Advanced Study, by “Overseas Research Program for Young Scientists” through Korea Institute for Advanced Study, by “the 10th MSJ-Seasonal Institute 2017” through Mathematical Society of Japan, and by Basic Science Research Program through the National Research Foundation of Korea (NRF-2018R1C1B6007009). M.K. thanks to Kentaro Nakamura and Shanwen Wang for giving nice lectures about Euler Systems at KIAS. With their lectures, M.K. got a better picture of the subject. M.K. appreciates Robert Pollack for the useful discussion and encouragement. M.K. also thanks to Byungheup Jun, Jungyun Lee, and Peter J. Cho for general support and constant encouragement. H.S. thanks to Ashay Burungale for helpful conversations and comments about modular symbols. H.S. is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2017R1A2B4012408). All we deeply thank the organizers of Iwasawa 2017 for providing us with the intensive atmosphere, which makes it possible for us to finish the first draft during the conference. All we deeply thank the referee for his or her extremely careful reading and comments. A number of inaccuracies are corrected and the exposition is improved a lot due to the comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Ho Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, CH., Kim, M. & Sun, HS. On the indivisibility of derived Kato’s Euler systems and the main conjecture for modular forms. Sel. Math. New Ser. 26, 31 (2020). https://doi.org/10.1007/s00029-020-00554-w

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00554-w

Keywords

Mathematics Subject Classification

Navigation