Skip to main content
Log in

Momentum polytopes of projective spherical varieties and related Kähler geometry

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We apply the combinatorial theory of spherical varieties to characterize the momentum polytopes of polarized projective spherical varieties. This enables us to derive a classification of these varieties, without specifying the open orbit, as well as a classification of all Fano spherical varieties. In the setting of multiplicity free compact and connected Hamiltonian manifolds, we obtain a necessary and sufficient condition involving momentum polytopes for such manifolds to be Kähler and classify the invariant compatible complex structures of a given Kähler multiplicity free compact and connected Hamiltonian manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. From now on we implicitly fix a choice of such a facet for all \(\alpha \in \Sigma _{\mathbb {Q}}(\Xi ,Q)\); see Lemma 4.20-(2).

  2. Simple roots are numbered here according to the usual Bourbaki notation [6].

  3. From now on we implicitly fix a choice of such a face for all \(\alpha \in \Sigma _{\mathbb {R}}(\Xi ,{\mathcal {P}})\).

  4. As recalled in Sect. 3.2, it is a general fact, due to Brion [11], that the set of spherical roots of a spherical variety is linearly independent.

References

  1. Alexeev, V., Brion, M.: Boundedness of spherical Fano varieties. The Fano Conference, Univ. Torino, Turin, pp. 69–80 (2004)

  2. Alexeev, V., Brion, M.: Stable spherical varieties and their moduli. IMRP Int. Math. Res. Pap., Art. ID 46293, 57pp (2006)

  3. Avdeev, R., Cupit-Foutou, S.: On the irreducible components of moduli schemes for affine spherical varieties. Transform. Groups 23(2), 299–327 (2018)

    Article  MathSciNet  Google Scholar 

  4. Avdeev, R., Cupit-Foutou, S.: New and old results on spherical varieties via moduli theory. Adv. Math. 328, 1299–1352 (2018)

    Article  MathSciNet  Google Scholar 

  5. Biliotti, L., Ghigi, A., Heinzner, P.: A remark on the Gradient Map. Doc. Math. 19, 1017–1023 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bourbaki, N.: Groupes et algèbres de Lie. Chapitres IV, V, VI, Hermann, Paris (1968)

  7. Bravi, P., Luna, D.: An introduction to wonderful varieties with many examples of type \({\sf F}_4\). J. Algebra 329(1), 4–51 (2011)

    Article  MathSciNet  Google Scholar 

  8. Bravi, P., Pezzini, G.: Primitive wonderful varieties. Math. Z. 282(3–4), 1067–1096 (2016)

    Article  MathSciNet  Google Scholar 

  9. Brion, M.: Sur l’image de l’application moment. In: Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986), volume 1296 of Lecture Notes in Math., pp. 177–192. Springer, Berlin (1987)

  10. Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58(2), 397–424 (1989)

    Article  MathSciNet  Google Scholar 

  11. Brion, M.: Vers une généralisation des espaces symétriques. J. Algebra 134(1) (1990)

  12. Brion, M.: Variétés sphériques. Notes de la session de la Société Mathématique de France “Opérations hamiltoniennes et opérations de groupes algébriques”, Grenoble (1997)

  13. Brion, M.: Curves and divisors in spherical varieties. Algebraic groups and Lie groups, pp. 21–34, Austral. Math. Soc. Lect. Ser. 9. Cambridge Univ. Press, Cambridge (1997)

  14. Camus, R.: Variétés sphériques affines lisses. Ph.D. thesis, Institut Fourier, Grenoble (2001)

  15. Cupit-Foutou, S.: Wonderful varieties: a geometrical realization. arXiv:0907.2852v4 [math.AG] (2014)

  16. Delzant, T.: Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. France 116(3), 315–339 (1988)

    Article  MathSciNet  Google Scholar 

  17. Foschi, A.: Variétés magnifiques et polytopes moment. Ph.D. thesis, Institut Fourier, Grenoble (1998)

  18. Fulton, W.: Introduction to Toric Varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry

  19. Gagliardi, G., Hofscheier, J.: Gorenstein spherical Fano varieties. Geom. Dedicata 178(1), 111–133 (2015)

    Article  MathSciNet  Google Scholar 

  20. Gandini, J.: Spherical orbit closures in simple projective spaces and their normalizations. Transform. Groups 16(1), 109–136 (2011)

    Article  MathSciNet  Google Scholar 

  21. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67(3), 491–513 (1982)

    Article  MathSciNet  Google Scholar 

  22. Hartshorne, R.: Algebraic Geometry. Springer, New York (1977). Graduate Texts in Mathematics, No. 52

  23. Huckleberry, A., Wurzbacher, T.: Multiplicity-free complex manifolds. Math. Ann. 286, 261–280 (1990)

    Article  MathSciNet  Google Scholar 

  24. Kirwan, F.: Convexity properties of the moment mapping. III. Invent. Math. 77(3), 547–552 (1984)

    Article  MathSciNet  Google Scholar 

  25. Knop, F.: The Luna-Vust theory of spherical embeddings. In: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), pp. 225–249, Madras, 1991. Manoj Prakashan

  26. Knop, F.: Some remarks on multiplicity free spaces. In: Representation theories and algebraic geometry (Montreal, PQ, 1997), volume 514 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 301–317. Kluwer Acad. Publ., Dordrecht (1998)

  27. Knop, F.: Automorphisms of multiplicity free Hamiltonian manifolds. J. Am. Math. Soc. 24(2), 567–601 (2011)

    Article  MathSciNet  Google Scholar 

  28. Losev, I.V.: Proof of the Knop conjecture. Ann. Inst. Fourier (Grenoble) 59(3), 1105–1134 (2009)

    Article  MathSciNet  Google Scholar 

  29. Losev, I.V.: Uniqueness property for spherical homogeneous spaces. Duke Math. J. 147(2), 315–343 (2009)

    Article  MathSciNet  Google Scholar 

  30. Luna, D.: Grosses cellules pour les variétés sphériques. Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge (1997)

  31. Luna, D.: Variétés sphériques de type \(A\). Publ. Math. Inst. Hautes Études Sci. 94, 161–226 (2001)

    Article  Google Scholar 

  32. Luna, D., Vust, T.: Plongements d’espaces homogènes Comment. Math. Helv. 2, 186–245 (1983)

    Article  Google Scholar 

  33. Ness, L.: A stratification of the null cone via the moment map. Am. J. Math. 106(6), 1281–1329 (1984). With an appendix by David Mumford

  34. Pasquier, B.: Variétés horosphériques de Fano. Bull. Soc. Math. France 136(2), 195–225 (2008)

    Article  MathSciNet  Google Scholar 

  35. Pasquier, B.: The Log Minimal Model Program for horospherical varieties via moment polytopes. Acta Mathematica Sinica 34(3), 542–562 (2018)

    Article  MathSciNet  Google Scholar 

  36. Pezzini, G., Van Steirteghem, B.: Combinatorial characterization of the weight monoids of smooth affine spherical varieties. Trans. Am. Math. Soc. 372, 2875–2919 (2019)

  37. Sjamaar, R.: Convexity properties of the moment mapping re-examined. Adv. Math. 138(1), 46–91 (1998)

    Article  MathSciNet  Google Scholar 

  38. Timashev, D.A.: Homogeneous Spaces and Equivariant Embeddings, volume 138 of Encyclopaedia of Mathematical Sciences. Springer, Heidelberg (2011). Invariant Theory and Algebraic Transformation Groups, 8

  39. Vinberg, È.B., Kimel’fel’d, B.N.: Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funktsional. Anal. i Prilozhen. 12(3), 12–19, 96 (1978)

    Article  MathSciNet  Google Scholar 

  40. Woodward, C.: The classification of transversal multiplicity-free group actions. Ann. Global Anal. Geom. 14(1), 3–42 (1996)

    Article  MathSciNet  Google Scholar 

  41. Woodward, C.: Multiplicity-free Hamiltonian actions need not be Kähler. Invent. Math. 131(2), 311–319 (1998)

    Article  MathSciNet  Google Scholar 

  42. Woodward, C.: Spherical varieties and existence of invariant Kähler structures. Duke Math. J. 93(2), 345–377 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for several useful suggestions, which improved the paper. S. C.-F. is supported by the SFB/TRR 191 “Symplectic Structures in Geometry, Algebra and Dynamics.” B. V. S. received support from the (US) N.S.F. through Grant DMS 1407394 and from the City University of New York PSC-CUNY Research Award Program. He thanks Friedrich Knop and the Department of Mathematics at the FAU for hosting him in 2016–2017 and Medgar Evers College for his 2016–2017 Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Van Steirteghem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cupit-Foutou, S., Pezzini, G. & Van Steirteghem, B. Momentum polytopes of projective spherical varieties and related Kähler geometry. Sel. Math. New Ser. 26, 27 (2020). https://doi.org/10.1007/s00029-020-0549-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-0549-9

Keywords

Mathematics Subject Classification

Navigation