Skip to main content
Log in

Anisotropic and pq-nonlinear partial differential equations

  • Physicochemical Properties of Matter
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Anisotropic partial differential equations recently received a large interest in the mathematical literature, due to their applications to double and multiphase variational energies, as well as to anisotropic energies in integral form. More specifically, from a mathematical point of view, we need to consider a generalization of the classical Laplacian elliptic and parabolic partial differential equations, as well as the nonlinear p-Laplacian equations, which naturally arises new and interesting mathematical questions, nowadays only partially solved in the context of anisotropic pq-growth nonlinear elliptic and parabolic partial differential equations. In this context, we describe some “mathematical pathologies”; more precisely, some singularities in the potential generated by some anisotropic energies. The singularities appear if the anisotropy of the energy is too large in some directions, while these singularities do not appear, not only if the energy is isotropic with respect to all directions, but also even if we allow an energy integral with a mild anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baroni P, Colombo M, Mingione G (2015) Harnack inequalities for double phase functionals. Nonlinear Anal 121:206–222

    Article  Google Scholar 

  • Baroni P, Colombo M, Mingione G (2016) Non-autonomous functionals, borderline cases and related function classes. St Petersburg Mat J 27:347–379

    Article  Google Scholar 

  • Baroni P, Colombo M, Mingione G (2018) Regularity for general functionals with double phase. Calc Var 57:62. https://doi.org/10.1007/s00526-018-1332-z

    Article  Google Scholar 

  • Beck L, Mingione G (2019) Lipschitz bounds and non-uniformly ellipticity. Commun Pure Appl Math (to appear)

  • Boccardo L, Marcellini P (1976) Sulla convergenza delle soluzioni di disequazioni variazionali. Ann Mat Pura Appl 110:137–159

    Article  Google Scholar 

  • Boccardo L, Marcellini P, Sbordone C (1990) Regularity for variational problems with sharp non standard growth conditions. Boll Un Mat Ital 4–A:219–225

    Google Scholar 

  • Boccardo L, Gallouët T, Marcellini P (1996) Anisotropic equations in \(L^1\). Differ Integral Equ 9:209–212

    Google Scholar 

  • Bögelein V, Duzaar F, Marcellini P (2013) Parabolic equations with p, q-growth. J Math Pur Appl 100:535–563

    Article  Google Scholar 

  • Bögelein V, Duzaar F, Marcellini P (2013) Parabolic systems with \(p, q-\)growth: a variational approach. Arch Ration Mech Anal 210:219–267

    Article  Google Scholar 

  • Bögelein V, Duzaar F, Marcellini P (2014) Existence of evolutionary variational solutions via the calculus of variations. J Differ Equ 256:3912–3942

    Article  Google Scholar 

  • Bögelein V, Duzaar F, Marcellini P (2015) A time dependent variational approach to image restoration. SIAM J Imaging Sci 8:398–428

    Article  Google Scholar 

  • Bögelein V, Duzaar F, Marcellini P, Signoriello S (2015) Nonlocal diffusion equations. J Math Anal Appl 432:398–428

    Article  Google Scholar 

  • Bögelein V, Duzaar F, Marcellini P, Signoriello S (2017) Parabolic equations and the bounded slope condition. Ann Inst H Poincare Anal Non Lineair 34:355–379

    Article  Google Scholar 

  • Bögelein V, Duzaar F, Marcellini P, Scheven C (2018) Doubly nonlinear equations of porous medium type. Arch Ration Mech Anal 229:503–545

    Article  Google Scholar 

  • Bögelein V, Duzaar F, Marcellini P, Scheven C (2018) A variational approach to doubly nonlinear equations. Atti Accad Naz Lincei Rend Lincei Mat Appl. 29(4):739–772. https://doi.org/10.4171/RLM/832

    Article  Google Scholar 

  • Botteron B, Marcellini P (1991) A general approach to the existence of minimizers of one-dimensional non-coercive integrals of the calculus of variations. Ann l’Inst Henri Poincare Non Linear Anal 8:197–223

    Article  Google Scholar 

  • Bousquet P, Brasco L (2018) Lipschitz regularity for orthotropic functionals with nonstandard growth conditions. arXiv:1810.03837v1(Preprint)

  • Carozza M, Giannetti F, Leonetti F, di Napoli A Passarelli (2018) Pointwise bounds for minimizers of some anisotropic functionals. Nonlinear Anal 177:254–269

    Article  Google Scholar 

  • Chlebicka I (1918) A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces. Nonlinear Anal 175:1–27

    Article  Google Scholar 

  • Colombo M, Mingione G (2015) Regularity for double phase variational problems. Arch Rat Mech Anal 215(2):443–496

    Article  Google Scholar 

  • Colombo M, Mingione G (2015) Bounded minimisers of double phase variational integrals. Arch Ration Mech Anal 218(1):219–273

    Article  Google Scholar 

  • Cupini G, Marcellini P, Mascolo E (2009) Regularity under sharp anisotropic general growth conditions. Discret Contin Dyn Syst Ser B 11:66–86

    Google Scholar 

  • Cupini G, Marcellini P, Mascolo E (2012) Local boundedness of solutions to quasilinear elliptic systems. Manuscripta Math. 137:287–315

    Article  Google Scholar 

  • Cupini G, Marcellini P, Mascolo E (2013) Local boundedness of solutions to some anisotropic elliptic systems. II. Stationary problems 169–186, contemporary mathematics. Recent trends in nonlinear partial differential equations, vol 595. American Mathematical Socirty, Providence

    Google Scholar 

  • Cupini G, Marcellini P, Mascolo E (2014) Existence and regularity for elliptic equations under \(p, q-\text{ growth }\). Adv Differ Equ 19:693–724

    Google Scholar 

  • Cupini G, Marcellini P, Mascolo E (2015) Local boundedness of minimizers with limit growth conditions. J Optim Theory Appl 166:1–22

    Article  Google Scholar 

  • Cupini G, Giannetti F, Giova R, di Napoli A Passarelli (2017) Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients. Nonlinear Anal 54:7–24

    Article  Google Scholar 

  • Cupini G, Marcellini P, Mascolo E (2017) Regularity of minimizers under limit growth conditions. Nonlinear Anal 153:294–310

    Article  Google Scholar 

  • Cupini G, Marcellini P, Mascolo E (2018) Nonuniformly elliptic energy integrals with \(p, q-\)growth. Nonlinear Anal 177:312–324

    Article  Google Scholar 

  • Dal Maso G (1993) An introduction to \(\varGamma \) convergence, progress in nonlinear differential equations and their applications, vol 8. Birkhäuser, Boston

    Book  Google Scholar 

  • De Filippis C (2018) Higher integrability for constrained minimizers of integral functionals with \((p, q)-\)growth in low dimension. Nonlinear Anal 170:1–20

    Article  Google Scholar 

  • De Filippis C, Oh J (2019) Regularity for multi-phase variational problems. J Differ Equ 267:1631–1670

    Article  Google Scholar 

  • De Filippis C, Palatucci G (2019) H ölder regularity for nonlocal double phase equations. J Differ Equ 267:547–586

    Article  Google Scholar 

  • De Giorgi E, Franzoni T (1975) Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl Sci Fis Mat Nat 58:842–850

    Google Scholar 

  • De Giorgi E, Spagnolo S (1973) Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine. Boll Un Mat Ital 8:391–411

    Google Scholar 

  • Di Marco T, Marcellini P (2019) A-priori gradient bound for elliptic systems under either slow or fast growth conditions. arXiv:1910.04158(to appear)

  • DiBenedetto E, Gianazza U, Vespri V (2016) Remarks on local boundedness and local Hölder continuity of local weak solutions to anisotropic p-Laplacian type equations. J Ellipt Parabol Equ 2:157–169

    Article  Google Scholar 

  • Diening L, Harjulehto P, Hästö P, Ružicka M (2011) Lebesgue and Sobolev spaces with variable exponents. Lecture notes in mathematics, vol 2017. Springer, Heidelberg

    Book  Google Scholar 

  • Düzgun G, Marcellini P, Vespri V (2014) Space expansion for a solution of an anisotropic p-Laplacian equation by using a parabolic approach. Riv Math Univ Parma 5:93–111

    Google Scholar 

  • Düzgun G, Marcellini P, Vespri V (2014) An alternative approach to the Hölder continuity of solutions to some elliptic equations. Nonlinear Anal 94:133–141

    Article  Google Scholar 

  • Eleuteri M, Marcellini P, Mascolo E (2016) Lipschitz estimates for systems with ellipticity conditions at infinity. Ann Mat Pura Appl 195:1575–1603

    Article  Google Scholar 

  • Eleuteri M, Marcellini P, Mascolo E (2016) Lipschitz continuity for functionals with variable exponents. Rend Lincei Mat Appl 27:61–87

    Google Scholar 

  • Eleuteri M, Marcellini P, Mascolo E (2019) Local Lipschitz continuity of minimizers with mild assumptions on the \(x\)-dependence. Discret Cont Din Syst 12:251–265

    Google Scholar 

  • Eleuteri M, Marcellini P, Mascolo E (2019) Regularity for scalar integrals without structure conditions. Adv Calc Var. https://doi.org/10.1515/acv-2017-0037

    Article  Google Scholar 

  • Eleuteri M, Passarelli di A (2017) Higher differentiability for solutions to a class of obstacle problems. Calc Var 57:115. https://doi.org/10.1007/s00526-018-1387-x

    Article  Google Scholar 

  • Esposito L, Leonetti F, Mingione G (2004) Sharp regularity for functionals with \((p, q)\) growth. J Differ Equ 204:5–55

    Article  Google Scholar 

  • Ferraris G (2016) Max von Laue tra raggi X e cristalli. Acc Sc Torino Mem Sc Fis 40:47–61

    Google Scholar 

  • Ferraris G (2019) Proficue idee sulla struttura della materia. Quad Accad Sci Torino 30:7–20

    Google Scholar 

  • Fusco N, Marcellini P, Ornelas A (1998) Existence of minimizers for some non convex one-dimensional integrals. Portug Math 55:167–186

    Google Scholar 

  • Giaquinta M (1987) Growth conditions and regularity, a counterexample. Manuscr Math 59:245–248

    Article  Google Scholar 

  • Harjulehto P, Häst ö P, Toivanen O (2017) Hölder regularity of quasiminimizers under generalized growth conditions. Calc Var Partial Differ Equ 56:26

    Article  Google Scholar 

  • Hästö P, Ok J (2019) Maximal regularity for local minimizers of non-autonomous functionals. arXiv:1902.00261v2(Preprint)

  • Liskevich V, Skrypnik I (2009) Hö lder continuity of solutions to an anisotropic elliptic equation. Nonlinear Anal 71:1699–1708

    Article  Google Scholar 

  • Marcellini P (1987) Un example de solution discontinue d’un problème variationnel dans le cas scalaire, Preprint 11, Istituto Matematico “U.Dini”, Università di Firenze

  • Marcellini P (1973) Su una convergenza di funzioni convesse. Boll Un Mat Ital 8:137–158

    Google Scholar 

  • Marcellini P (1975) Un teorema di passaggio al limite per la somma di funzioni convesse. Boll Un Mat Ital 11:107–124

    Google Scholar 

  • Marcellini P (1979) Convergence of second order linear elliptic operators. Boll Un Mat Ital B 16:278–290

    Google Scholar 

  • Marcellini P (1984) Quasiconvex quadratic forms in two dimensions. Appl Math Optim 11:183–189

    Article  Google Scholar 

  • Marcellini P (1989) The stored-energy for some discontinuous deformations in nonlinear elasticity. Partial differential equations and the calculus of variations. Progress in nonlinear differential equations and applications, vol II. Birkhäuser, Boston, pp 767–786

    Google Scholar 

  • Marcellini P (1996) Everywhere regularity for a class of elliptic systems without growth conditions. Ann Scuola Norm Sup Pisa Cl Sci 23:1–25

    Google Scholar 

  • Marcellini P (1997) Some recent developments in the study of Hilbert’s 19th and 20th problems (Italian). Boll Un Mat Ital A (7) 11:323–352

    Google Scholar 

  • Marcellini P (2019) Regularity under general and \(p, q\)-growth conditions. Discret Cont Din Syst. https://doi.org/10.3934/dcdss.2020155

    Article  Google Scholar 

  • Marcellini P (2019) A variational approach to parabolic equations under general and \(p, q\)-growth conditions. Nonlinear Anal. https://doi.org/10.1016/j.na.2019.02.010

    Article  Google Scholar 

  • Marcellini P, Papi G (2006) Nonlinear elliptic systems with general growth. J Differ Equ 221:412–443

    Article  Google Scholar 

  • Marcellini P, Sbordone C (1977) An approach to the asymptotic behaviour of elliptic–parabolic operators. J Math Pures Appl 56:157–182

    Google Scholar 

  • Marino A, Spagnolo S (1969) Un tipo di approssimazione dell’operatore \(\sum _{ij}D_{i}(a_{ij}\left( x\right) D_{j})\) con operatori \(\sum _{j}D_{j}(\beta \left( x\right) D_{j})\). Ann Sc Norm Sup Pisa Cl Sci 23:657–673

    Google Scholar 

  • Mascolo E, Migliorini A (2003) Everywhere regularity for vectorial functionals with general growth. ESAIM Control Optim Calc Var 9:399–418

    Article  Google Scholar 

  • Mingione G (2006) Regularity of minima: an invitation to the dark side of the calculus of variations. Appl Math 51:355–426

    Article  Google Scholar 

  • Piro-Vernier S, Ragnedda F, Vespri V (2019) Hölder regularity for bounded solutions to a class of anisotropic operators. Manuscripta Math 158:421–439

    Article  Google Scholar 

  • Rǎdulescu V, Zhang Q (2018) Double phase anisotropic variational problems and combined effects of reaction and absorption terms. J Math Pures Appl 118:159–203

    Article  Google Scholar 

  • Sbordone C (1973) Su una caratterizzazione degli operatori differenziali del 2o ordine. Atti Accad Naz Lincei Rend Cl Sci Fis Mat Nat 54:365–372

    Google Scholar 

  • Sbordone C (1974) Alcune questioni di convergenza per operatori differenziali del \(2^{o}\) ordine. Boll Un Mat Ital 10:672–682

    Google Scholar 

  • Sbordone C (1975) Su alcune applicazioni di un tipo di convergenza variazionale. Ann Sc Norm Sup Pisa Cl Sci 2:617–638

    Google Scholar 

  • Spagnolo S (1968) Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann Sc Norm Sup Pisa 22:571–597

    Google Scholar 

  • Tartar L (1979) Homogénéisation et compacité par compensation, Séminaire Goulaouic-Schwartz (1978/1979), Exp. No. 9, 9 pp., École Polytech, Palaiseau

  • Tartar L (1985) Estimations fines des coefficients homogénéisés, Ennio De Giorgi colloquium (Paris, 1983), Res. Notes in Math., vol 125. Pitman, Boston, MA, pp 168–187

  • Tartar L (2007) Luc Qu’est-ce que l’homogén éisation? Port Math 64:389–444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Marcellini.

Ethics declarations

Conflict of interest

The author declare that he has not conflict of interest.

Ethical approval

This paper implies no specific bio-medical, or anthropometric action, or sampling on humans and animals. Cited research and related images refer to studies completed and published in the past.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is the peer-reviewed version of a contribution presented at the Conference on “Anisotropic Properties of Matter”, organized by Giovanni Ferraris and held at Accademia Nazionale dei Lincei in Rome, October 16–17, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcellini, P. Anisotropic and pq-nonlinear partial differential equations. Rend. Fis. Acc. Lincei 31, 295–301 (2020). https://doi.org/10.1007/s12210-020-00885-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00885-y

Keywords

Navigation