Skip to main content
Log in

Rational extended thermodynamics: a link between kinetic theory and continuum theory

  • Statistical thermodynamics and chemical kinetics
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

There are three different levels of description for macroscopic physical systems: macroscopic level using thermodynamics and continuum mechanics, mesoscopic level by the kinetic theory, and microscopic level by statistical mechanics of many-particle systems. The search for possible links bridging among these levels is the core part of the Hilbert Sixth Problem. Through a concrete example, we explain the links and also the main idea of Rational Extended Thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aquilanti V, Borges EP, Coutinho ND, Mundim KC, Carvalho-Silva VH (2018) From Statistical thermodynamics to molecular kinetics: the change, the chance and the choice. Rend Fis Acc Lincei 29:787–802

    Article  Google Scholar 

  • Arima T, Taniguchi S, Ruggeri T, Sugiyama M (2011) Extended thermodynamics of dense gases. Continuum Mech. Thermodyn. 24:271–292

    Article  Google Scholar 

  • Arima T, Ruggeri T, Sugiyama M (2017) Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes. Phys. Rev. E 9(042143):1–111

    Google Scholar 

  • Arima T, Ruggeri T, Sugiyama M (2018) Extended thermodynamics of rarefied polyatomic gases: 15-field theory incorporating relaxation processes of molecular rotation and vibration. Entropy 20:301

    Article  Google Scholar 

  • Boillat G (1974) Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systémes hyperboliques. C. R. Acad. Sci. Paris A 278:909

    Google Scholar 

  • Boillat G, Ruggeri T (1997a) Moment equations in the kinetic theory of gases and wave velocities. Continuum Mech. Thermodyn. 9:205–212

    Article  CAS  Google Scholar 

  • Boillat G, Ruggeri T (1997b) Hyperbolic principal subsystems: Entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137:305–320

    Article  Google Scholar 

  • Borgnakke C, Larsen PS (1975) Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 1975(18):405–420

    Article  Google Scholar 

  • Bourgat J-F, Desvillettes L, Le Tallec P, Perthame B (1994) Microreversible collisions for polyatomic gases. Eur. J. Mech. B/Fluids 13:237–254

    Google Scholar 

  • Caflisch R (1980) The fluid dynamical limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33:651–666

    Article  Google Scholar 

  • Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Dreyer W (1987) Maximization of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20:6505–6517

    Article  CAS  Google Scholar 

  • Gorban AN, Karlin I (2014) Hilbert’s 6th problem: exact and approximate hydrodynamic manifolds for kinetic equations. Bull. Am. Math. Soc. 51:186

    Google Scholar 

  • Grad H (1958) Principles of the kinetic theory of gases, Handbuch der Physik, vol 12. Springer, Berlin, pp 205–294

    Google Scholar 

  • Ikenberry E, Truesdell C (1956) On the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory. Ration. Mech. Anal. 5:1–54

    Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys. Rev. 106:620

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics II. Phys. Rev. 108:171

    Article  Google Scholar 

  • Kogan MN (1967) On the principle of maximum entropy. Rarefied gas dynamics, vol I. Academic Press, New York, pp 359–368

    Google Scholar 

  • Lanford OE (1975) Time evolution of large classical dynamical system. Lecture Notes Physics, vol 38. Springer, Berlin, pp 1–111

    Google Scholar 

  • Morrey CB (1955) On the derivation of the equations of hydrodynamics from statistical mechanics. Commun. Pure Appl. Math. 8:279–326

    Article  Google Scholar 

  • Müller I, Ruggeri T (1993) Extended thermodynamics, 1st edn. Springer, New York

    Book  Google Scholar 

  • Müller I, Ruggeri T (1998) Rational extended thermodynamics, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Nishida T (1978) Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the incompressible Euler equation. Commun. Math. Phys. 61:119–148

    Article  Google Scholar 

  • Ruggeri T (1989) Galilean invariance and entropy principle for systems of balance laws. The structure of extended thermodynamics. Continuum Mech. Thermodyn. 1:3–20

    Article  Google Scholar 

  • Ruggeri T (2012) Can constitutive relations be represented by non-local equations? Q. Appl. Math. 70:597

    Article  Google Scholar 

  • Ruggeri T (2017) New frontiers in non-equilibrium thermodynamics, Atti dei Convegni Lincei, vol 314. Bardi Edizioni, Roma, pp 49–71

    Google Scholar 

  • Ruggeri T, Strumia A (1981) Main field and convex covariant density for quasi-linear hyperbolic systems: relativistic fluid dynamics. Ann. Inst. H. Poincaré Sect A 34:65–84

    Google Scholar 

  • Ruggeri T, Sugiyama M (2015) Rational extended thermodynamics beyond the monatomic gas. Springer, Heidelbergh

    Book  Google Scholar 

  • Saint-Raymond L (2009) Hydrodynamic limits of the Boltzmann equation. Lecture Notes in Mathematics, vol. 1971. Springer, Berlin

  • Slemrod M (2013) From Boltzmann to Euler: Hilbert’s 6th problem revisited. Comput. Math. Appl. 65:1497

    Article  Google Scholar 

  • Spohn H (1991) Large scale dynamics of interacting particles, springer series: theoretical and mathematical physics. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by National Group of Mathematical Physics GNFM-INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Ruggeri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, T., Sugiyama, M. Rational extended thermodynamics: a link between kinetic theory and continuum theory. Rend. Fis. Acc. Lincei 31, 33–38 (2020). https://doi.org/10.1007/s12210-020-00874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00874-1

Keywords

Navigation