Skip to main content
Log in

Wavelet Thresholding-Based Despeckling of COSMO-SkyMed SAR Image

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

The selection of an efficient speckle filter for SAR imagery primarily depends upon a specific application of interest and statistical characteristics of the noise present in SAR datasets. The main goal of this study is to assess the performance of the two wavelet shrinkage-based filtering techniques (VISU shrink and SURE shrink) against two spatial adaptive filters (Enhanced Lee and Gamma MAP) and one non-local filter (NL-SAR) for the removal of speckle noise from high-resolution COSMO-SkyMed (CSK) SAR datasets. Before applying these filters to real CSK datasets, they are tested on synthetically generated speckled test datasets and benchmark simulated SAR datasets. Experimental analysis has been conducted on synthetically generated speckled datasets based on varying level of speckle noise introduced on test images. In case of benchmark datasets, numerous qualitative and quantitative measures are observed and evaluated. To find the best filter for real CSK data, a Pareto optimality concept has been used where the coefficient of variation is the parameter considered. From the findings, it is evident that VISU shrink-generated speckle filtering solution is non-dominated by all the other filtering solutions except NL-SAR-based speckle suppression in smooth areas. Considering the various user-defined situations of homogeneity and heterogeneity in the SAR scene, an overall performance index is formulated and VISU shrink performs the best in all user-defined conditions.

Zusammenfassung

Speckle-Reduzierung mittels Wavelet und Schwellenwert bei COSMO-SkyMed SARSzenen. Die Auswahl eines effizienten Speckle-Filters für SAR-Bilder hängt in erster Linie von der spezifischen Anwendung und von statistischen Merkmalen des in den SARDatensätzen vorhandenen Rauschens ab. Das wichtigste Ziel dieser Untersuchung ist die Bewertung der Leistung der beiden Waveletbasierten Filtertechniken (VISU-Shrink und SURE-Shrink) im Vergleich zu zwei räumlich-adaptiven Filtern (Enhanced Lee und Gamma MAP) und einem nicht-lokalen Filter (NL-SAR) zur Unterdrückung von Speckle-Rauschen in hochaufgelösten COSMOSkyMed (CSK) SAR-Datensätzen. Bevor diese Filter auf echte CSK-Datensätze angewendet werden, wurden sie an Datensätzen erprobt, die entweder synthetisch erzeugte Speckles enthielten oder zu simulierten Datensätzen vorhandener Benchmarks gehörten. Wir haben die Untersuchungen an synthetisch erzeugten mit Speckles versehenen Datensätzen durchgeführt und dabei unterschiedliche Intensitäten des Speckle-Rauschens erprobt. Im Falle der Benchmark-Datensätze wurden zahlreiche qualitative und quantitative Messungen durchgeführt. Um den besten Filter für die CSK-Daten zu finden, wurde die Pareto-Optimierung eingesetzt, bei der der Variationskoeffizient der entscheidende Parameter ist. Ergebnis der Untersuchung ist, dass die Leistung des VISU-Filters von keinem anderen erreicht wird, außer von der NL-SAR-basierten Speckle-Unterdrückung in texturarmen Bereichen. Unter der Berücksichtigung der Benutzeranforderung zu Homogenität und Heterogenität der SARSzenen wird ein "overall performance index" formuliert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Achim A, Tsakalides P, Bezerianos A (2003) Sar image denoising via bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Trans Geosci Remote Sens 41(8):1773–1784

    Article  Google Scholar 

  • Argenti F, Alparone L (2002) Speckle removal from sar images in the undecimated wavelet domain. IEEE Trans Geosci Remote Sens 40(11):2363–2374

    Article  Google Scholar 

  • Argenti F, Lapini A, Bianchi T, Alparone L (2013) A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci Remote Sens Mag 1(3):6–35

    Article  Google Scholar 

  • Bo Y, Wang J, Zhu C, Ge Y (2003a) Wavelet-based filter for SAR speckle reduction and the comparative evaluation on its performance. In: Remote sensing for environmental monitoring, GIS applications, and geology II, vol 4886. International Society for Optics and Photonics, pp 279–289

  • Bo Y, Wang J, Zhu C, Ge Y (2003b) Wavelet-based filter for SAR speckle reduction and the comparative evaluation on its performance. In: Remote sensing for environmental monitoring, GIS applications, and geology II, vol 4886. International Society for Optics and Photonics, pp 279–289

  • Buades A, Coll B, Morel J-M (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530

    Article  Google Scholar 

  • Dachasilaruk S (2008) Speckle noise reduction for SAR images using interscale multiplication and soft thresholding. In: Wavelet analysis and pattern recognition, 2008. ICWAPR’08. International conference on, vol 1. IEEE, pp 188–193

  • Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41(7):909–996

    Article  Google Scholar 

  • Deb K (2001) Multi objective optimization using evolutionary algorithms. Wiley, New York

    Google Scholar 

  • Deledalle C-A, Denis L, Tupin F (2009) Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 18(12):2661–2672

    Article  Google Scholar 

  • Deledalle C-A, Denis L, Tupin F, Reigber A, Jäger M (2014) Nl-sar: a unified nonlocal framework for resolution-preserving (pol)(in) sar denoising. IEEE Trans Geosci Remote Sens 53(4):2021–2038

    Article  Google Scholar 

  • Dellepiane SG, Angiati E (2014) Quality assessment of despeckled sar images. IEEE J Sel Top Appl Earth Obs Remote Sens 7(2):691–707

    Article  Google Scholar 

  • Di Martino G, Di Simone A, Iodice A, Riccio D (2016) Scattering-based nonlocal means sar despeckling. IEEE Trans Geosci Remote Sens 54(6):3574–3588

    Article  Google Scholar 

  • Di Martino G, Poderico M, Poggi G, Riccio D, Verdoliva L (2013) Benchmarking framework for sar despeckling. IEEE Trans Geosci Remote Sens 52(3):1596–1615

    Article  Google Scholar 

  • Di Simone A, Di Martino G, Iodice A, Riccio D (2017) Sensitivity analysis of a scattering-based nonlocal means despeckling algorithm. Eur J Remote Sens 50(1):87–97

    Article  Google Scholar 

  • Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  Google Scholar 

  • Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455

    Article  Google Scholar 

  • Farhadiani R, Homayouni S, Safari A (2019) Hybrid sar speckle reduction using complex wavelet shrinkage and non-local PCA-based filtering. IEEE J Sel Top Appl Earth Obs Remote Sens 12(5):1489–1496

    Article  Google Scholar 

  • Feng H, Hou B, Gong M (2011) Sar image despeckling based on local homogeneous-region segmentation by using pixel-relativity measurement. IEEE Trans Geosci Remote Sens 49(7):2724–2737

    Article  Google Scholar 

  • Frost VS, Stiles JA, Shanmugan KS, Holtzman JC (1982) A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans Pattern Anal Mach Intell 2:157–166

    Article  Google Scholar 

  • Fukuda S, Hirosawa H (1998) Suppression of speckle in synthetic aperture radar images using wavelet. Int J Remote Sens 19(3):507–519

    Article  Google Scholar 

  • Gagnon L, Jouan A (1997) Speckle filtering of SAR images—a comparative study between complex-wavelet-based and standard filters. Proc SPIE 3169:80–91

    Article  Google Scholar 

  • Glaister J, Wong A, Clausi DA (2013) Despeckling of synthetic aperture radar images using monte carlo texture likelihood sampling. IEEE Trans Geosci Remote Sens 52(2):1238–1248

    Article  Google Scholar 

  • Guan D, Xiang D, Tang X, Kuang G (2018) Sar image despeckling based on nonlocal low-rank regularization. IEEE Trans Geosci Remote Sens 57(6):3472–3489

    Article  Google Scholar 

  • Haykin SS (1984) Introduction to adaptive filters. Macmillan, New York

    Google Scholar 

  • Kuan D, Sawchuk A, Strand T, Chavel P (1987) Adaptive restoration of images with speckle. IEEE Trans Acoust Speech Signal Process 35(3):373–383

    Article  Google Scholar 

  • Lee JS (1980) Digital image enhancement and noise filtering by use of local statistics. IEEE Trans Pattern Anal Mach Intell 2:165–168

    Article  Google Scholar 

  • Lee JS, Grunes MR, Schuler DL, Pottier E, Ferro-Famil L (2006) Scattering-model-based speckle filtering of polarimetric SAR data. IEEE Trans Geosci Remote Sens 44(1):176–187

    Article  Google Scholar 

  • Lee JS, Jurkevich L, Dewaele P, Wambacq P, Oosterlinck A (1994) Speckle filtering of synthetic aperture radar images: a review. Remote Sens Rev 8(4):313–340

    Article  Google Scholar 

  • Liu F, Wu J, Li L, Jiao L, Hao H, Zhang X (2017) A hybrid method of sar speckle reduction based on geometric-structural block and adaptive neighborhood. IEEE Trans Geosci Remote Sens 56(2):730–748

    Article  Google Scholar 

  • Lopes A, Touzi R, Nezry E (1990) Adaptive speckle filters and scene heterogeneity. IEEE Trans Geosci Remote Sens 28(6):992–1000

    Article  Google Scholar 

  • Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  Google Scholar 

  • Morandeira N, Grimson R, Kandus P (2016) Assessment of sar speckle filters in the context of object-based image analysis. Remote Sens Lett 7(2):150–159

    Article  Google Scholar 

  • Parrilli S, Poderico M, Angelino CV, Scarpa G, Verdoliva L (2010) A nonlocal approach for SAR image denoising. In: 2010 IEEE international geoscience and remote sensing symposium. IEEE, pp 726–729

  • Porcello LJ, Massey NG, Innes RB, Marks JM (1976) Speckle reduction in synthetic-aperture radars. JOSA 66(11):1305–1311

    Article  Google Scholar 

  • Shamsoddini A, Trinder JC (2012) Edge-detection-based filter for sar speckle noise reduction. Int J Remote Sens 33(7):2296–2320

    Article  Google Scholar 

  • Simard M, DeGrandi G, Thomson KP, Benie GB (1998) Analysis of speckle noise contribution on wavelet decomposition of SAR images. IEEE Trans Geosci Remote Sens 36(6):1953–1962

    Article  Google Scholar 

  • Touzi R (2002) A review of speckle filtering in the context of estimation theory. IEEE Trans Geosci Remote Sens 40(11):2392–2404

    Article  Google Scholar 

  • Touzi R, Lopes A, Bousquet P (1988) A statistical and geometrical edge detector for SAR images. IEEE Trans Geosci Remote Sens 26(6):764–773

    Article  Google Scholar 

  • USC-SIPI (2018). The USC-SIPI image database. http://sipi.usc.edu/database/. Accessed 3 Sept 2018

  • Wang P, Zhang H, Patel VM (2017) Sar image despeckling using a convolutional neural network. IEEE Signal Process Lett 24(12):1763–1767

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Indian Space Research Organization (ISRO) for funding this research. They also want to thank Dr. Charles Deledalle for providing the MATLAB code of the NL-SAR filter and Image Processing Research Group (GRIP) of University of Naples Federico II, Naples, Italy for providing the benchmark simulated datasets. They also want to acknowledge Italian Space Agency (ASI) for providing the required CSK datasets over Dhanbad area. Finally, they want to thank anonymous reviewers and the associate editor for their valuable comments and helpful suggestions which greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Kumar Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, T.K., Samanta, B., Chakravarty, D. et al. Wavelet Thresholding-Based Despeckling of COSMO-SkyMed SAR Image. PFG 88, 319–336 (2020). https://doi.org/10.1007/s41064-019-00089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-019-00089-6

Keywords

Navigation