Skip to main content
Log in

Fluids in High-Pressure Granulites

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Properties of fluids in high-pressure granulites were studied in HP granulites (~8.7–11 kbar, ~800–900°С) and syngranulite fluid infiltration-driven HP metasomatites (~11–9 kbar, ~920–850°С) from the Lapland granulite belt of the Fennoscandian Shield. The study involved large-scale mapping of the rocks, microthermometry of mineral-hosted fluid inclusions, multiequilibrium mineral thermobarometry, and calculations of H2O activity based on mineral equilibria. The mafic pyroxene granulites and syngranulite metasomatites (quartz blastomylonites with orthopyroxene, sillimanite, and garnet; veins and vein-like bodies of orthopyroxene–garnet and diopside–scapolite rocks) contain similar assemblages of syngenetic fluid inclusions (which are hosted mostly in quartz and also in garnet, orthopyroxene, and scapolite) of contrasting chemical composition: nearly pure СО2 (distinctly predominant), brines (the dominant salts are CaCl2 and NaCl), and N2 ± H2O. These three types of inclusions coexist in the same generations of early inclusions: rarer primary (p) and predominant primary–secondary (ps). The CO2 inclusions have either high or low densities, and the N2 inclusions are of low density. The brine inclusions show a wide range of total salt contents (up to 30–35 wt%) and variable concentration proportions of the dominant salts: p-inclusions with a salinity of 20 wt% CaCl2 + 10 wt% NaCl; ps-inclusions with a salinity of 5 wt% CaCl2 + 20 wt% NaCl; p- and ps-inclusions with a salinity of 5–23 wt% NaCl eq; and p-inclusions with halite (up to 35 wt% NaCl). In general, CaCl2 is the predominant salt component in the early p- and ps-inclusions of the rocks. Considered together, currently available data (including Sr, Nd, and O isotope systems) on these rocks indicate that the external fluid flow during the origin of granulites was evidently of mantle origin. At the peak P–T parameters, the inclusions were entrapped from a heterogeneous fluid in which immiscible water–salt and CO2-rich fluids, which initially contained N2, coexisted. Data on the chemical composition and salt concentrations of the fluids, \({{a}_{{{{{\text{H}}}_{2}}{\text{O}}}}}\) = 0.40–0.51, are compared with the theoretically predicted phase state of the fluids and the properties of the coexisting immiscible fluid phases at the estimated P–T parameters of granulite petrogenesis on the basis of numerical models in the H2O–CO2–NaCl and H2O–CO2–CaCl2 ternary systems. The location of the tie-lines and solvus were calculated to subsequently use for the thermodynamic prediction. The paper discusses similarity and the reasons for the difference between the theoretical compositions of the generated fluid phases and the composition of fluid inclusions, geochemical consequences of the heterogenization of granulite fluids (the formation of concentrated alkaline brines and a potentially acidic CO2-rich fluid phase, the values of the mass and volume fractions of these phases depending on variations in the composition of the initial homogeneous fluid, etc.). It follows that an extensive region of the compositions of aqueous fluids with different concentrations of CO2 and Na and Ca chlorides exists at the PT parameters of HP granulites in which originally homogeneous fluid splits into compositionally contrasting fluid phases with different properties. This region of coexisting immiscible fluids significantly expands with increasing CaCl2 concentration. Hence, the lower crust at the level of the HP granulite facies may be the region where high-temperature immiscible fluids are generated. One of these fluids is a denser phase of alkaline brines, and the other is a less dense potentially acidic phase of H2O–CO2 fluids rich in CO2. Ascending along regional permeable zones, these fluid phases of deep origin can play an important role in magmatic, metamorphic, metasomatic, and ore-forming processes in the middle and upper crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

Notes

  1. Herein we use mineral symbols and notation according to (Whitney and Evans, 2010) and the following compositional parameters: XMg,Ca = Mg,Ca/(Mg + Fe + Mn + Ca) for garnet, XMg = Mg/(Mg + Fe) for pyroxene, cordierite, biotite, and amphibole; XAl = Al/(Al + Si), for biotite; and XCa (concentration of the meionite end member) = Ca/(Ca + Na + K) for scapolite.

  2. Histograms and isochors of inclusions are shown in the respective figures in the Russian and English on-line versions of the paper available at https://elibrary.ru and http://link.springer.com/ respectively: Suppl. 1, ESM_1.pdf. Granulites: histograms for CO2 inclusions of high density (ps are primary–secondary inclusions) and low density (s are secondary inclusions).

  3. Suppl. 2, ESM_2. Syngranulite metasomatites (Ms): histograms of the primary (p), primary–secondary (ps), and secondary (s) CO2 inclusions in the quartz blastomylonites (Qz-Blm)

  4. Suppl. 3, ESM_3. Syngranulite metasomatites (MS): histograms of the primary (p), primary–secondary (ps), and secondary (s) inclusions and brines and nitrogen hosted in the quartz blastomylonites and nitrogen inclusions in the quartz blastomylonites (Qz-Blm).

  5. Suppl. 4, ESM_4. Syngranulite metasomatites (MS): histograms of the primary (p), primary–secondary (ps), and secondary (s) inclusions of CO2 and N2 hosted in the orthopyroxene–garnet (OpxGrt) veins.

  6. Suppl. 5, ESM_5. Syngranulite metasomatites (MS): histograms of the primary (p), pseudosecondary (ps) CO2 inclusions in the diopside–scapolite (DiSc) rocks.

  7. Suppl. 6, ESM_6. Isochors of the CO2 inclusions.

REFERENCES

  1. Aranovich, L.Ya., Fluids of the granulite facies: physicochemical aspect, Granulitovye kompleksy v geologicheskom razvitii dokembriya i fanerozoya (Granulite Complexes in the Precambrian and Phanrozoic Geological Evolution) SPb.: IGGD RAN, 2007, pp. 35–39.

    Google Scholar 

  2. Aranovich, L.Ya., Fluid–mineral equilibria and thermodynamic mixing properties of fluid systems, Petrology, 2013, vol. 21, no. 6, pp. 539–549.

    Article  Google Scholar 

  3. Aranovich, L.Ya., The role of brines in high-temperature metamorphism and granitization, Petrology, 2017, vol. 25, no. 5, pp. 486–497.

    Article  Google Scholar 

  4. Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite–periclase equilibrium, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 200–212.

    Article  Google Scholar 

  5. Aranovich, L.Y. and Newton, R.C., Reversed determination of the reaction: phlogopite + quartz = enstatite + potassium feldspar + H2O in the ranges 750–875°C and 2–12 kbar at low H2O activity with concentrated KCl solutions, Am. Mineral., 1998, vol. 83, pp. 193–204.

    Article  Google Scholar 

  6. Aranovich, L.Y., Newton, R.C., and Manning, C.E., Brine–assisted anatexis: experimental melting in the system haplogranite–H2O–NaCl–KCl at deep–crustal conditions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 111–120.

    Article  Google Scholar 

  7. Aranovich, L.Y. and Podlesskii, K.K., Geothermobarometry of high–grade metapelites: simultaneously operating reactions, Geol. Soc., London: Spec. Publ., 1989, vol. 43, no. 1, pp. 45–61.

    Article  Google Scholar 

  8. Aranovich, L. and Safonov, O., Halogens in high-grade metamorphism, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Harlov, D.E. and Aranovich, L., Eds., Springer Geochemistry, Springer International Publ., 2018, pp. 713–757.

    Google Scholar 

  9. Aranovich, L.Ya., Bortnikov, N.S., Bushmin, S.A., et al., Fluid flows in regional deformation zones, Petrology, 2009, vol. 17, no. 4, pp. 389–409.

    Article  Google Scholar 

  10. Aranovich, L.Ya., Dubinina, E.O., Avdeenko, A.S., et al., Oxygen isotopic composition of coexisting minerals of sillimanite–hypersthene rocks from the Por’ya Bay Area: evidence of fluid involvement in granulite-facies metamorphism, Geochem. Int., 2010a, vol. 48, no. 8, pp. 739–751.

    Article  Google Scholar 

  11. Aranovich, L.Ya., Zakirov, I.V., Sretenskaya, N.G., and Gerya T.V., Ternary system H2O–CO2–NaCl at high TP parameters: an empirical mixing model, Geochem. Int., 2010b, vol. 48, no. 5, pp. 446–455.

    Article  Google Scholar 

  12. Aranovich, L.Y., Makhluf, A.R., Manning, C.E., et al., Fluids, melting, granulites and granites: a controversy – reply to the commentary of J.D. Clemens, I.S. Buick, and G. Stevens, Precambrian Res., 2016, vol. 278, pp. 400–404.

    Article  Google Scholar 

  13. Bakker, R.J., Re-equilibration processes in fluid inclusion assemblages, Minerals, 2017, vol. 7, no. 117, pp. 1–19.

    Article  Google Scholar 

  14. Bakker, R.J. and Doppler, G., Salinity and density modifications of synthetic H2O and H2O–NaCl fluid inclusions in re–equilibration experiments at constant temperature and confining pressure, Chem. Geol., 2016, vol. 424, pp. 73–85.

    Article  Google Scholar 

  15. Barbey, P. and Raith, M., The granulite belt of Lapland, Granulites and Crustal Evolution, Vielzeuf, D. and Vidal, Ph., Eds., Kluwer Acad. Publ., 1990, pp. 111–132.

    Google Scholar 

  16. Baumgartner, M., Ronald, J., Bakker, R.J., and Doppler, G., Re-equilibration of natural H2O–CO2-salt-rich fluid inclusions in quartz. Part 1. Experiments in pure water at constant pressures and differential pressures at 600°C, Contrib. Mineral. Petrol., 2014, vol. 167, p. 1017.

    Article  Google Scholar 

  17. Belyaev, O.A., Acid leaching and associated Fe–Mg metasomatism under the granulite facies conditions, Metasomatoz i metasomatity v metamorficheskikh kompleksakh dokembriya (Metasomatism and Metasomatites in the Precambrian Metamorphic Complexes), Apatity: Izd. Kol. FAN SSSR, 1981, pp. 10–19.

    Google Scholar 

  18. Berman, R.G., Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications, Can. Mineral., 1991, vol. 29, no. 4, pp. 833–855.

    Google Scholar 

  19. Berman, R.G. and Aranovich, L.Ya., Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2, Contrib. Mineral. Petrol., 1996, vol. 126, nos. 1–2, pp. 1–24.

    Article  Google Scholar 

  20. Berman, R.G., Aranovich, L.Y., Rancourt, P., and Mercier, P.H.J., Reversed phase equilibrium constraints on the stability of Mg–Fe–Al biotite, Am. Mineral., 2007, vol. 92, pp. 139–150.

    Article  Google Scholar 

  21. Bischoff, J.L., Rosenbauer, R.J., and Fournier, R.O., The generation of HCl in the system CaCl2–H2O: vapor–liquid relations from 380–500°C, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 7–16.

    Article  Google Scholar 

  22. Bodnar, R.J. and Vityk, O., Interpretation of microthermometric data for H2O–NaCl inclusions, Fluid Inclusions in Minerals: Methods and Applications, De Vivo, V. and Frezzotti, M.L., Ed., Virginia: Tech, 1994, pp. 117–130.

  23. Bolder–Schrijver, L.J.A., Kriegsman, L.M., and Touret, J.L.R., Primary carbonate–CO2 inclusions in sapphirine–bearing granulites from central Sri Lanka, J. Metamorph. Geol., 2000, vol. 18, pp. 259–269.

    Article  Google Scholar 

  24. Borisenko, A.S., Cryometric study of salt composition of gas–liquid inclusions in minerals, Geol. Geofiz., 1977, no. 8, pp. 16–27.

  25. Bowers, T.S. and Helgeson, H.C., Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geologic systems. Equation of state for H2O–CO2–NaCl fluids at high pressures and temperatures, Geochim. Cosmochim. Acta, 1983, vol. 47, pp. 1247–1275.

    Article  Google Scholar 

  26. Bushmin, S.A., Metasomatic rocks in zones of regional metamorphism, Geologicheskaya s”emka metamorficheskikh i metasomaticheskikh kompleksov (Geological Survey of Metamorphic and Metasomatic Complexes), Glebovitskii, V.A., Leningrad: VSEGEI, 1996, pp. 84–125.

    Google Scholar 

  27. Bushmin, S.A., Evolutional model of metasomatism in metamorphic cycle, Theophrastus Contributions to Advanced Studies in Geology. Volume 3. Models and Modelling of Geologic Processes and Objects. Glebovitsky, V.A. and Dech, V.N., Eds., St. Petersburg: Athens, 2000, pp. 137–140

  28. Bushmin, S.A. and Glebovitskii, V.A., Scheme of mineral facies of metamorphic rocks, Geol. Ore Deposite, 2008, vol. 50, no. 8, pp. 659–669.

  29. Bushmin, S.A. and Glebovitsky, V.A., Scheme of mineral facies of metamorphic rocks and its application to Fennoscandian Shield with representative sites of orogenic gold mineralization, Trans. Karel. Res. Centre RAS. Precambrian Geol. Ser., 2016, no. 2, pp. 3–27.

  30. Bushmin, S.A., Dolivo-Dobrovolsky, D.V., and Lebedeva, Yu.M., Infiltration metasomatism under high-pressure granulite-facies conditions based on orthopyroxene–sillimanite rocks in shear zones of the Lapland Granulite Belt, Dokl. Earth Sci., 2007, vol. 412, no. 3, pp. 106–109.

    Article  Google Scholar 

  31. Bushmin, S.A., Glebovitskii, V.A., Savva, E.V., et al., The age of HP metasomatism in shear zones during collision-related metamorphism in the Lapland Granulite Belt: the U/Pb SHRIMP II dates on zircons from sillimanite–hypersthene rocks of the Porya Guba nappe, Dokl. Earth Sci., 2009, vol. 428, 6, pp. 1342–1346.

    Article  Google Scholar 

  32. Carlson, W.D., Hixon, D., Garber, M., and Bodnar, J., Controls on metamorphic equilibration: the importance of intergranular solubilities mediated by fluid composition, J. Metamorph. Geol., 2015, vol. 33, pp. 123–146.

    Article  Google Scholar 

  33. Chu, H., Chi, G., and Chou, I–M., Freezing and melting behaviors of H2O–NaCl–CaCl2 solutions in fused silica capillaries and glass–sandwiched films: implications for fluid inclusion studies, Geofluids, 2016, vol. 16, pp. 518–532.

    Article  Google Scholar 

  34. Cordier, P., Doukhan, J.C., and Ramboz, C., Influence of dislocations on water leakage from fluid inclusions in quartz: a quantitative reappraisal, Eur. J. Mineral., 1994, vol. 6, pp. 745–752.

    Article  Google Scholar 

  35. Crawford, M.L. and Hollister, L.S., Metamorphic fluids, the evidence from fluid inclusions, Fluid–Rock Interactions during Metamorphism, Walther, J.V. and Wood, B.J., Eds., New York: Springer, 1986, pp. 1–35.

    Google Scholar 

  36. Damman, A.H., Kars, S.M., Touret, J.L.R., et al., PIXE and SEM analyses of fluid inclusions in quartz crystals from the K–alteration zone of the Rosia Poeini porphyry–Cu deposit, Apuseni mountains, Rumania, Eur. J. Mineral., 1996, vol. 8, pp. 1081–1096.

    Article  Google Scholar 

  37. Diamond, L.W. and Tarantola, A., Interpretation of fluid inclusions in quartz deformed by weak ductile shearing: reconstruction of differential stress magnitudes and pre-deformation fluid properties, Earth Planet. Sci. Lett., 2015, vol. 417, pp. 107–119.

    Article  Google Scholar 

  38. Dolivo-Dobrovolsky, D.V., Origin and Conditions of Formationof Sapphirine-Bearing Rocks of the Central Kola Granulite–Gneiss Terrane, Extended Abstract of Candidate (Geol.-Min.) Dissertation, St. Petersburg: IGGD RAN, 2002.

  39. Duan, X., A general model for predicting the solubility behavior of H2O–CO2 fluids in silicate melts over a wide range of pressure, temperature and compositions, Geochim. Cosmochim. Acta, 2014, vol. 125, pp. 582–609.

    Article  Google Scholar 

  40. Duan, Z., Moller, N., and Weare, J.H., Equation of state for the NaCl–H2O–CO2 system. Prediction of phase equilibria and volumetric properties, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 2869–2882.

    Article  Google Scholar 

  41. Fonarev, V.I., and Kreulen, R., Polymetamorphism in the Lapland Granulite Belt: evidence from fluid inclusions, Petrology, 1995, vol. 3, no. 4, pp. 340–356.

    Google Scholar 

  42. Fonarev, V.I., Touret, J.L.R., and Kotelnikova, Z.A., Fluid inclusions in rocks from the Central Kola granulite area (Baltic Shield), Eur. J. Mineral., 1998, vol. 10, pp. 1181–1200.

    Article  Google Scholar 

  43. Frezzotti, M.–L. and Touret, J.L.R., CO2, carbonate–rich melts, and brines in the mantle, Geosci. Front., 2014, vol. 5, pp. 697–710.

    Article  Google Scholar 

  44. Fu, B. and Touret, J.L.R., From granulite fluids to quartz–carbonate megashear zones: the gold rush, Geosci. Front., 2014, vol. 5, pp. 747–758.

    Article  Google Scholar 

  45. Govorov, I.N., Termodinamika ionno-mineral’nykh ravnovesii i mineralogeniya gidrotermal’nykh mestorozhdenii (Thermodynamics of Ion-Mineral Equilibria and metallogeny of Hydrothermal Deposits), Moscow: Nauka, 1977.

  46. Gunter, F., Principles of Isotope Geology, 2nd. Ed. New York: John Wiley & Sons, 1986.

  47. Hammerli, J. and Rubenach, M., The role of halogens during regional and contact metamorphism, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle, Elsevier, 2018.

    Google Scholar 

  48. Heinrich, W.H., Fluid immiscibility in metamorphic rocks, Rev. Mineral. Geochem., 2007, vol. 65, pp. 389–430.

    Article  Google Scholar 

  49. Herms, P. and Schenk, V., Fluid inclusions in high pressure granulites of the Pan-African belt in Tanzania (Uluguru Mus): a record of prograde to retrograde fluid evolution, Contrib. Mineral. Petrol., 1998, vol. 130, pp. 199–212.

    Article  Google Scholar 

  50. Higashino, F., Kawakami, T., Satish-Kumar, M., et al., Chlorine-rich fluid or melt activity during granulite facies metamorphism in the Late Proterozoic to Cambrian continental collision zone–an example from the Sor Rondane mountains, East Antarctica, Precambrian Res., 2013, vol. 234, pp. 229–246.

    Article  Google Scholar 

  51. Hisada, K., Perchuk, L.L., Gerya, T.V., et al., P–T–fluid evolution in the Mahalapye Complex. Limpopo high–grade terrane, eastern Botswana, J. Metamorph. Geol., 2005, vol. 23, no. 5, pp. 313–334.

    Article  Google Scholar 

  52. Holness, M.B., Equilibrium dihedral angles in the system quartz–CO2–H2O–NaCl at 800oC and 1–15 kbar: the effect of pressure and fluid composition on the permeability of quartzites, Earth Planet. Sci. Lett., 1992, vol. 114, pp. 171–184.

    Article  Google Scholar 

  53. Ivanov, M.V. and Bushmin, S.A., Thermodynamic model of the system H2O–CO2–CaCl2 at high P–T parameters, Exp. Geosci., 2018, vol. 24, no. 1, pp. 110–113.

    Google Scholar 

  54. Ivanov, M.V. and Bushmin, S.A., Equation of state of the H2O–CO2–CaCl2 fluid system and properties of fluid phases at P-T parameters of the middle and lower crust, Petrology, 2019, vol. 27, no. 4, pp. 395–406.

    Article  Google Scholar 

  55. Van den Kerkhof, A.M., The System CO2–CH4–N2 in Fluid Inclusions: Theoretical Modelling and Geological Applications, PHD Dissertation, Amsterdam: Free University Pres, 1988.

  56. Van den Kerkhof, A.M. and Hein, U.F., Fluid inclusion petrography, Lithos, 2001, vol. 55, pp. 27–47.

    Article  Google Scholar 

  57. Khodorevskaya, L.I. and Korikovsky, S.P., Metasomatic garnet–clinopyroxene–orthopyroxene–hornblende veins in metaanorthosites of the Kolvitsa Massif, Kola Peninsula: mineral composition and relation with syngranulite granitization, Dokl. Earth Sci., 2007, vol. 415, pp. 915–918.

    Article  Google Scholar 

  58. Kigai, I.N. and Tagirov, B.R., Evolution of acidity of hydrothermal fluids related to hydrolysis of chlorides, Petrology, 2010, vol. 18, no. 3, pp. 252–262.

    Article  Google Scholar 

  59. Klatt, E. and Schoch, A.E., Comparison of fluid inclusion characteristics for high–grade metamorphic rocks from Finnish Lapland with medium–grade metamorphic rocks from northwestern Cape Province, South Africa, 27th Intern. Geol. Congr. Moscow, 1974, vol. 10, p. 73.

  60. Koizumi, T., Tsunogae, T., and van Reenen, D.D., Fluid evolution of partially retrogressed pelitic granulite from the southern marginal zone of the Neoarchean Limpopo Complex, South Africa: evidence from phase equilibrium modeling, Precambrian Res., 2014, vol. 253, pp. 146–156.

    Article  Google Scholar 

  61. Kol’tsov, A.B., Effect of the sources and evolution of solutions on the composition of metasomatites, Geochem. Int., 2015, vol. 53, no. 2, pp. 133–149.

    Article  Google Scholar 

  62. Kooi, M.E., Schouten, J.A., Kerkhof, A.V., et al., The system CO2–N2 at high pressure and applications to fluid inclusions, Geochim. Cosmochim. Acta, 1998, vol. 62, pp. 2837–2843.

    Article  Google Scholar 

  63. Korikovsky, S.P. and Aranovich, L.Ya., Charnockitization and enderbitization of mafic granulites in the Porya Bay area, Lapland Granulite Belt, Southern Kola Peninsula: I. Petrology and geothermobarometry, Petrology, 2010, vol. 18, no. 4, pp. 320–349.

    Article  Google Scholar 

  64. Korikovsky, S.P. and Aranovich L.Ya., Charnockitization of feldspar-free orthopyroxene–clinopyroxene–phlogopite metaultramafite in the Lapland Granulite Belt, southern Kola Peninsula: compositional trends of rocks and minerals, PT parameters, and fluid regime, Petrology, 2015, vol. 23, no. 3, pp. 189–226.

    Article  Google Scholar 

  65. Korzhinskii, D.S., Open systems in perfectly mobile components and phase rule, Izv. Akad. Nauk SSSR, Ser. Geol., 1949, no. 2, pp. 3–14.

  66. Korzhinskii, D.S., Teoriya metasomaticheskoi zonal’nosti (Theory of Metasomatic Zoning) Moscow: Nauka, 1982.

  67. Korzhinskii, D.S., Bimetasomaticheskie flogopitovye i lazuritovye mestorozhdeniya arkheya Pribaikal’ya (Archean Bimetasomatic Phlogopite and Lazurite Deposits of the Baikla Area), Moscow: AN SSSR, 1947.

  68. Kozlov, N.E., Laplandskii granulitovyi poyas – pervichnaya priroda i razvitie (Lapland Granulite Belts: Primary Nature and Evolution), Apatity: KNTs AN SSSR, 1990.

  69. Kozlova, N.E., Balagansky,V.V., Bogova, M.N., and Rezhenova, S.A., Structural-petrological study of orthopyroxene–sillimanite association of the Lapland granulites, Izv. AN SSSR. Ser. Geol., 1991, no. 4, pp. 66–76.

  70. Lamadrid, H.M., Lamb, W.M., Santosh, M., and Bodnar, R.J., Raman spectroscopic characterization of H2O in CO2–rich fluid inclusions in granulite facies metamorphic rocks, Gondwana Res., 2014, vol. 26, pp. 301–310.

    Article  Google Scholar 

  71. Lebedeva, Yu.M., Bushmin, S.A., and Glebovitskii, V.A., Thermodynamic conditions of metasomatism in high-temperature and high-pressure shear zones (Kandalaksha–Umba Zone, Kola Peninsula), Dokl. Earth Sci., 2012, vol. 445, no. 2, pp. 874–878.

    Article  Google Scholar 

  72. Liebscher, A., Aqueous fluids at elevated pressure and temperature, Geofluids, 2010, vol. 10, pp. 3–19.

    Article  Google Scholar 

  73. Manning, C.E., Fluids of the lower crust: deep is different, Annu. Rev. Earth Planet. Sci., 2018, vol. 46, pp. 67–97.

    Article  Google Scholar 

  74. Manning, C.E. and Aranovich, L.Y., Brines at high pressure and temperature: thermodynamic, petrologic and geochemical effects, Precambrian Res., 2014, vol. 253, pp. 6–16.

    Article  Google Scholar 

  75. Mei, Y., Liu, W., Brugger, J., et al., The dissociation mechanism and thermodynamic properties of HCl(aq) in hydrothermal fluids (to 700°C, 60 kbar) by ab initio molecular dynamics simulations, Geochim. Cosmochim. Acta, 2018, vol. 226, pp. 84–106.

    Article  Google Scholar 

  76. Murakami, T., Wallis, S., Enami, M., and Kagi, H., Forearc diamond from japan, Geology, 2008, vol. 36, pp. 219–222.

    Article  Google Scholar 

  77. Naumov, V.B. and Naumov, G.B., Mineral-forming fluids and physicochemical tendencies of their evolution, Geochem. Int., 1980, no. 10, pp. 1450–1460.

  78. Newton, R.C., Fluids of granulite facies metamorphism, Advances in Physical Geochemistry, Fluid-Rock Interactions during Metamorphism, Walther, J.V. and Wood, B.J., Eds., New York: Springer–Verlag, 1986, vol. 5, pp. 36–59.

    Google Scholar 

  79. Newton, R.C. and Manning, C.E., Role of saline fluids in deep–crustal and upper–mantle metasomatism: insights from experimental studies, Geofluids, 2010, vol. 10, pp. 58–72.

    Google Scholar 

  80. Newton, R.C., Smith, J., and Windley, V., Carbonic metamorphism, granulites and crustal growth, Nature, 1980, vol. 288, pp. 45–50.

    Article  Google Scholar 

  81. Newton, R.C., Aranovich, L.Ya., Hansen, E.C., and Vandenheuvel, B.A., Hypersaline fluids in precambrian deep–crustal metamorphism, Precambrian Res., 1998, vol. 91. pp. 41–63.

  82. Newton, R.C., Touret, J.L., and Aranovich, L.Y., Fluids and H2O activity at the onset of granulite facies metamorphism, Precambrian Res., 2014, vol. 253, pp. 17–25.

    Article  Google Scholar 

  83. Nijland, T.G., Touret, J.L.R., and Visser, D., Anomalously low temperature orthopyroxene, spinel, and sapphirine occurrences in metasediments from the Bamble amphibolite-to-granulite facies transition zone (South Norway): possible evidence for localized action of saline fluids, J. Geol., 1998, vol. 106, pp. 575–590.

    Article  Google Scholar 

  84. Oakes, C.S., Bodnar, R.I., and Simonson, J.M., The system NaCl–CaCl2–H2O: I. The ice liquidus at 1 atm total pressure, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 603–610.

    Article  Google Scholar 

  85. Perchuk, L.L. and Gerya, T.V., Fluid control of charnockitization, Chem. Geol., 1993, vol. 108, pp. 175–186.

    Article  Google Scholar 

  86. Perchuk, L.L., Gerya, T.V., and Korsman, K., A model for charnockitization of gneissic complexes, Petrology, 1994, vol. 2, no. 5, pp. 395–423.

    Google Scholar 

  87. Perchuk, L.L., Safonov, O.G., Gerya, T.V., et al., Mobility of components in metasomatic transformation and partial melting of gneisses: an example from Sri Lanka, Contrib. Mineral. Petrol., 2000, vol. 140, pp. 212–232.

    Article  Google Scholar 

  88. Petrenko, G.V., Malinin, S.D., and Arutyunyan, L.A., Experimental study of solubility of heavy metal sulfides in chloride solution–vapor phase heterogeneous systems, Geokhimiya, 1989, no. 6, pp. 882–887.

  89. Podlesskii, K.K., Hypersthene in assemblage with sillimanite and quartz as an indicator of metamorphic conditions, Dokl. Earth Sci., 2003, vol. 389, no. 1, pp. 248–251.

    Google Scholar 

  90. Priyatkina, L.A., Acid leaching under granulite facies conditions, Dokl. Akad. Nauk SSSR, 1977, vol. 234, no. 5, pp. 1179–1182.

    Google Scholar 

  91. Rafal’skii, R.P., On problem of acidity of hydrothermal solutions, Geokhimiya, 1987, no. 3, pp. 402–415.

  92. Roedder, E., Fluid Inclusions,Rev. Mineral.,Mineral. Soc. America, 1984, vol. 12.

    Book  Google Scholar 

  93. Safonov, O.G., Reutsky, V.N., Varlamov, D.A., et al., Composition and source of fluids in high–temperature graphite–bearing granitoids associated with granulites: examples from the southern marginal zone, Limpopo Complex, South Africa, Gondwana Res., 2018, vol. 60, pp. 129–152.

    Article  Google Scholar 

  94. Santosh, M., Tsunogae, T., and Yoshikura, S., “Ultrahigh-density” carbonic fluids in ultrahigh-temperature crustal metamorphism, J. Mineral. Petrol. Sci., 2004, vol. 99, pp. 164–179.

    Article  Google Scholar 

  95. Shmulovich, K.I. and Graham, C.M., Melting of albite and dehydration of brucite in H2O–NaCl fluids to 9 kbars and 700–900°C: implications for partial melting and water activities during high pressure metamorphism, Contrib. Mineral. Petrol., 1996, vol. 124, pp. 370–382.

    Article  Google Scholar 

  96. Sisson, V.B., Crawford, M.L., and Thompson, P.H., CO2-brine immiscibility at high temperatures, evidence from calcareous metasedimentary rocks, Contrib. Mineral. Petrol., 1981, vol. 78, pp. 371–378.

    Article  Google Scholar 

  97. Steele-MacInnis, M., Bodnar, R.J. and Naden, J., Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 21–40.

    Article  Google Scholar 

  98. Sterner, S.M. and Bodnar, R.J., Synthetic fluid inclusions in natural quartz. I. compositional types synthesized and applications to experimental geochemistry, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 2659–2668.

    Article  Google Scholar 

  99. Sterner, S.M. and Bodnar, R.J., Synthetic fluid inclusions. VII. Re-equilibration of fluid inclusions in quartz during laboratory-simulated metamorphic burial and uplift, J. Metamorph. Geol., 1989, no. 7, pp. 243–260.

  100. Sudovikov, N.G., Iron–magnesain–calcium metasomatism im the Archean of the Aldan Shield ad some problems of “base front,” Izv. Akad. Nauk SSSR. Ser. Geol., 1956, no. 1, pp. 29–49.

  101. Takahashi, K., Tsunogae, T., and Ugwuonah, E.N., Fluid–induced high-temperature metasomatism at Rundvågshetta in the Lutzow–Holm Complex, East Antarctica: implications for the role of brine during granulite formation, Geosci. Front., 2018, vol. 9, pp. 1309–1323.

    Article  Google Scholar 

  102. Touret, J.L.R., Fluid regime in Southern Norway, the record of fluid inclusions, The Deep Proterozoic Crust in the North Atlantic Provinces, Tobi, A.C. and Touret, J.L.R., Eds., Dordrecht: Reidel, 1985.

    Google Scholar 

  103. Touret, J.L.R., The role and nature of fluids in the continental lower crust, Geol. Soc. India, 1995, vol. 34, pp. 143–160.

    Google Scholar 

  104. Touret, J.L.R., Fluids in metamorphic rocks, Lithos, 2001, vol. 55, pp. 1–25.

    Article  Google Scholar 

  105. Touret, J. and Dietvorst, P., Fluid inclusions in high–grade anatectic metamorphites, J. Geol. Soc. London, 1983, vol. 140, pp. 635–649.

    Article  Google Scholar 

  106. Touret, J.L.R. and Huizenga, J.M., Fluid–assisted granulite metamorphism: a continental journey, Gondwana Res., 2012, vol. 21, pp. 224–235.

    Article  Google Scholar 

  107. Trommsdorff, V., Skippen, G., and Ulmer, P., Halite and sylvite as solid inclusions in high-grade metamorphic rocks, Contrib. Mineral. Petrol., 1985, vol. 89, pp. 24–29.

    Article  Google Scholar 

  108. Tsunogae, T., Santosh, M., Osanai, Y., et al., Very high-density carbonic fluid inclusions in sapphirine-bearing granulites from Tonagh island in the Archean Napier Complex, East Antarctica: implications for CO2 infiltration during ultrahigh–temperature (tn 1100°C) metamorphism, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 279–299.

    Article  Google Scholar 

  109. Tsunogae, T., Santosh, M., and Dubessy, J., Fluid characteristics of high- to ultrahigh-temperature metamorphism in southern India: a quantitative Raman spectroscopic study, Precambrian Res., 2008, vol. 162, pp. 198–211.

    Google Scholar 

  110. Vityk, M.O., Bodnar, R.J., and Doukhan, J.C., Synthetic fluid inclusions. XV. TEM investigation of plastic flow associated with reequilibration of fluid inclusions in natural quartz, Contrib. Mineral. Petrol., 2000, vol. 139, pp. 285–297.

    Article  Google Scholar 

  111. Watson, E.D. and Brenan, J.M., Fluids in the lithosphere: 1. Experimentally-determined wetting characteristics of CO2–H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation, Earth Planet. Sci. Lett., 1987, vol. 85, pp. 497–515.

    Article  Google Scholar 

  112. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  113. Xiao, Y., Hoefs, J., Kerkhof, A.M., et al., Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling, Contrib. Mineral. Petrol., 2000, vol. 139, pp. 1–16.

    Article  Google Scholar 

  114. Zonova I.A., Sinogeikin S.V., Shmulovich K.I. Temperature Gradient Mobility of Fluid Inclusions in Quartz, Dokl. Earth Sci., 1996, vol. 346, no. 3, pp. 126–128.

    Google Scholar 

  115. Zwart, E.W. and Touret, J.L.R., Melting behavior and composition of aqueous fluid inclusions in fluorite and calcite: applications within the system H2O–CaCl2–NaCl, Eur. J. Mineral., 1994, vol. 6, pp. 773–786.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank L.Ya. Aranovich for attention to the manuscript and constructive criticism. A.B. Koltsov is thanked for discussions of the tendencies in the evolution of acidity–alkalinity of the fluids. One of the granulite samples for this study was made available for us by courtesy of D.P. Krylov. Geological materials for this study were sampled at the territory of the Kandalaksha Nature Reserve. Its administration and staff are thanked for assistance in collecting these materials.

Funding

This study was carried out at the Laboratory of Fluid Processes under the State Task for the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Bushmin or Ye. A. Vapnik.

Additional information

Translated by E. Kurdyukov

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushmin, S.A., Vapnik, Y.A., Ivanov, M.V. et al. Fluids in High-Pressure Granulites. Petrology 28, 17–46 (2020). https://doi.org/10.1134/S0869591120010026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120010026

Keywords:

Navigation