Skip to main content
Log in

Experimental Study of the Peridotite–Basalt–Fluid System: Phase Relations at Subcritical and Supercritical Р-Т Conditions

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper reports experimental data on the partial melting of hydrous peridotite and basalt at pressures up to 4 GPa and temperatures up to 1400°С, as well as peridotite–basalt association in the presence of alkaline water–carbonate fluid as an experimental model of mantle reservoir with subducted oceanic protoliths. At partial melting of the hydrous peridotite at 3.7–4.0 GPa and 1000–1300°С, critical relations were observed over the entire studied pressure and temperature interval. At partial melting of hydrous basalt, critical relations between silicate melt and aqueous fluid were recorded at 1000°С and 3.7 GPa. The Na-alkaline silicate melt coexists with garnetite at 1100°С and with clinopyroxenite at 1150 and 1300°С. The peridotite–basalt–alkaline-aqueous–carbonate fluid at 4 GPa and 1400°C shows signs of critical relations between a carbonated silicate melt and a fluid. Reaction relations in the residual peridotite minerals with replacements of olivine ← orythopyroxene ← clinopyroxene ← potassic amphibole-type testify to a high chemical activity of the supercritical liquid. Experimental results suggest the existence of regions of partial melting (asthenospheric lenses) in the fluid-bearing upper mantle under supercritical conditions. These lenses contain near-solidus highly reactive supercritical liquids enriched in incompatible elements. Mantle reservoirs with supercritical liquids are geochemically similar to undepleted mantle and could serve as sources of magmas enriched in incompatible elements. The modal and cryptic upper mantle metasomatism under the effect of supercritical liquids leads to the refertilization of peridotite via enrichment of residual minerals in incompatible elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Bogatikov O.A., Kovalenko V.I., Sharkov E.V. Magmatizm, tektonika, geodinamika Zemli (Magmatism, Tectonics, and Geodynamics of the Earth), Moscow: Nauka, 2010.

  2. Bureau, H. and Keppler, H., Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications, Earth Planet. Sci. Lett., 1999, vol. 165, pp. 187–196.

    Article  Google Scholar 

  3. Collerson, K.D., Hapugoda, S., Kamber, B.S., and Williams, Q., Rocks from the mantle transition zone: majorite-bearing xenoliths from Malaita, southwest Pacific, Science, 2000, vol. 288, pp. 1215–1223.

    Article  Google Scholar 

  4. Collerson, K.D., Williams, Q., Kamber, B.S., et al., Majoritic garnet: a new approach to pressure estimation of shock events in meteorites and the encapsulation of sub-lithospheric inclusions in diamond, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 5939–5957.

    Article  Google Scholar 

  5. Fedorenko, V.A., Petrochemcial series of volcanic rocks of the Norilsk district, Geol. Geofiz., 1981, no. 6, pp. 78–88.

  6. Gasparik, T., Transformation of enstatite–diopside–jadeite pyroxenes to garnet, Contrib. Mineral. Petrol., 1989, vol. 102, pp. 389–405.

    Article  Google Scholar 

  7. Gorbachev, N.S., Flyuidno-magmaticheskoe vzaimodeistvie v sul’fidno-silikatnykh sistemakh (Fluid-Magmatic Interaction in Sulfide–Silicate Systems), Moscow: Nauka, 1989.

  8. Gorbachev, N.S., Supercritical state in the hydrous mantle: evidence from experimental study of fluid-bearing peridotite at P = 40 kbar and T = 1400°C, Dokl. Earth Sci., 2000, vol. 370, no. 1, pp. 147–149.

    Google Scholar 

  9. Gorbachev, N.S. Experimental study of interaction between fluid-bearing basaltic melts and peridotite: a mantle–crustal source of trap magmas in the Norilsk Area, Petrology, 2010, vol. 18, no. 4, pp. 416–431.

    Article  Google Scholar 

  10. Gorbachev, N.S., Kostyuk, A.V., and Shapovalov, Yu.B., Experimental study of the peridotite–H2O system at P = 3.8–4 GPa and T = 1000–1400°C: critical relations and vertical zoning of the upper mantle, Dokl. Earth Sci., 2015, vol. 461, no. 4, 360–363.

    Article  Google Scholar 

  11. Green, D.H., Hibberson, W.O., Kovacs, I., and Rosenthal, A., Water and its influence on the lithosphere–asthenosphere boundary, Nature, 2010, no. 7314, pp. 448–451.

  12. Gregoire, M., Moine, B.N., Oreiliy, S.Y., et al., Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate-and carbonate-rich melts (Kerguelen Islands, Indian Ocean), J. Petrol., 2000, vol. 41, no. 4, pp. 477–509.

    Article  Google Scholar 

  13. Grove, T.L., Chatterjee, N., Parman, S.W., and Medard, E., The influence of H2O on mantle wedge melting, Earth Planet. Sci. Lett., 2006, vol. 249, no. 1–2, pp. 74–89.

    Article  Google Scholar 

  14. Kawamoto, T. and Holloway, J.R., Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals, Science, 1997, vol. 276, no. 5310, pp. 240–243.

    Article  Google Scholar 

  15. Keppler, H. and Audetat, A., Fluid–mineral interaction at high pressure. Mineral behavior at extreme conditions, EMU Notes Mineral., 2005, vol. 7, pp. 225–251.

    Google Scholar 

  16. Kessel, R., Ulmer, P., Pettke, T., et al., The water-basalt system at 4 to 6 GPa: phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C, Earth Planet. Sci. Lett., 2005, vol. 237, pp. 873–892.

    Article  Google Scholar 

  17. Klein-BenDavid, O., Izraeli, E.S., Hauri, E., and Navon, O., Fluid inclusions in diamonds from the Diavik Mine, Canada and the evolution of diamond-forming fluids, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 723–744.

    Article  Google Scholar 

  18. Korzhinskii, D.S., Teoreticheskie osnovy analiza paragenezisov mineralov (Theoretical Principles of Analysis of Mineral Parageneses), Moscow: Nauka, 1973.

  19. Kovalenko V.I., Naumov V.B., Girnis A.V., et al., Average compositions of magmas and mantle sources of mid-ocean ridges and intraplate oceanic and continental settings estimated from the data on melt inclusions and quenched glasses of basalts, Petrology, 2007, vol. 15, no. 4, pp. 335–368.

    Article  Google Scholar 

  20. Kushiro, I., Compositions of magmas formed by partial zone melting of the Earth’s upper mantle, J. Geophys. Res., 1968, vol. 73, pp. 619–634.

    Article  Google Scholar 

  21. Lightfoot, P.C., Naldrett, A.J., Gorbachev, N.S., et al., Geochemistry of the Siberian trap of the Noril’sk area, USSR, with implication for the relative contributions of crust and mantle to flood basalt magmatism, Contrib. Mineral. Petrol., 1990, vol. 104, no. 3, pp. 631–644.

    Article  Google Scholar 

  22. Litasov, K.D. and Ohtani, E., Effect of mater on the phase relations in Earth’s mantle and deep water cycle, Sp. Pap. Geol. Soc. Am., 2007, vol. 421, pp. 115–156.

    Google Scholar 

  23. Litvin, Yu.A., Fiziko-khimicheskie issledovaniya plavleniya glubinnogo veshchestva Zemli (Physicochemical Studies of Deep Earth Melting), Moscow: Nauka, 1991

  24. Mallik, A. and Dasgupta, R., Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts, Earth Planet. Sci. Lett., 2012, vol. 329–330, pp. 97–108.

    Article  Google Scholar 

  25. Masaitis, V.L., Permian and Triassic magmatism of Siberia: problems of dynamic reconstructions, Zap. Vsesoyuz. Mineral. O-va, 1983, vol. 4, pp. 412–425.

    Google Scholar 

  26. Mibe, K., Kanzaki, M., Kawamoto, T., et al., Second critical endpoint in the peridotite–H2O system, J. Geophys. Res., 2007, vol. 112, p. B03201.

    Article  Google Scholar 

  27. Mysen, B. and Boettcher, A.L., Melting of a hydrous mantle: parts I and II. Phase relations of a natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen, J. Petrol., 1975, vol. 16, no. 3, pp. 520–593.

    Article  Google Scholar 

  28. Navon, O., Hutcheon, I.D., Rossman, G.R., and Wasserburg, G.J., Mantle-derived fluids in diamond microinclusions, Nature, 1988, vol. 335, pp. 784–789.

    Article  Google Scholar 

  29. Nicholls, J. and Carmichael, I.S.E., The equilibration temperature and pressure of various lava types with spinel- and garnet peridotite, Am. Mineral., 1972, vol. 57, pp. 941–959.

    Google Scholar 

  30. Nicholls, J., Carmichael, I.S.E., and Stormer, J.C., Jr. Silica activity and Ptotal in igneous rocks, Contrib. Mineral. Petrol., 1971, vol. 33, pp. 1–20.

    Article  Google Scholar 

  31. Okamoto, K. and Maruyama, Sh., The eclogite–garnetite transformation in the MORB + H2O system, Phys. Earth Planet. Int., 2004, vol. 146, pp. 283–296.

    Article  Google Scholar 

  32. Ringwood, A.E. and Green, D.H., An experimental investigation of the gabbro–eclogite transformation and some geophysical implications, Tectonophysics, 1966, vol. 3, pp. 383–427.

    Article  Google Scholar 

  33. Robie, R.A. and Hemingway, B.S., Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressures and at higher temperatures, US Geol. Survey Bull, 1995, no. 2131.

  34. Sobolev, N.V., Glubinnye vklyucheniya v kimberlitakh i problemy sostava verkhnei mantii (Deep-Seated Inclusions in Kimberlites and Problem of Upper Mantle Composition), Novosibirsk: Nauka, 1974.

  35. Stalder, R., Ulmer, P., Thompson, A.B., and Gunther, D., High pressure fluids in the system MgO–SiO2–H2O under upper mantle conditions, Contrib. Mineral. Petrol., 2001, vol. 140, pp. 607–618.

    Article  Google Scholar 

  36. Taylor, L.A. and Neal, C.R., Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part 1: mineralogy, petrography, and whole rock chemistry, J. Geol., 1989, vol. 97, pp. 551–567.

    Article  Google Scholar 

  37. Till, C.B., Grove, T.L., and Withers, A.C., The beginnings of hydrous mantle wedge melting, Contrib. Mineral. Petrol., 2012, vol. 163, pp. 669–688.

    Article  Google Scholar 

  38. Tumiati, S., Fumagalli, P., Tiraboschi, C., and Poli, S., An experimental study on COH-bearing peridotite up to 3.2 GPa and implications for crust–mantle recycling, J. Petrol., 2013, vol. 54, pp. 453–479.

    Article  Google Scholar 

  39. Wang, W., Formation of diamond with mineral inclusions of “mixed” eclogite and peridotite paragenesis, Earth Planet. Sci. Lett., 1998, vol. 160, no. 3, pp. 831–843.

    Article  Google Scholar 

  40. Weiss, Y., Kessel, R., Griffin, W.L., et al., A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea, Lithos, 2009, vol. 112, no. 2, pp. 660–674.

    Article  Google Scholar 

  41. Wyllie, P.J. and Ryabchikov, I.D., Volatile components, magmas, and critical fluids in upwelling mantle, J. Petrol., 2000, vol. 41, pp. 1195–1206.

    Article  Google Scholar 

  42. Yaxley, G.M., Experimental study of the phase and melting relations of homogeneous basalt plus peridotite mixtures and implications for the petrogenesis of flood basalts, Contrib. Mineral. Petrol., 2000, vol. 139, pp. 326–338.

    Article  Google Scholar 

  43. Zharikov, V.A., Osnovy fiziko-khimicheskoi petrologii (Principles of Physicochemical Petrology), Moscow: MGU, 1978.

Download references

Funding

This work was carried out at the Institute of Experimental Mineralogy of the Russian Academy of Sciences in the framework of the State Task (project no. АААА-А18-118020590140) and was partially supported by the Russian Foundation for Basic Research (project no. 17-05-00930а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Gorbachev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachev, N.S., Kostyuk, A.V., Nekrasov, A.N. et al. Experimental Study of the Peridotite–Basalt–Fluid System: Phase Relations at Subcritical and Supercritical Р-Т Conditions. Petrology 27, 553–566 (2019). https://doi.org/10.1134/S0869591119060031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591119060031

Keywords:

Navigation