Skip to main content

Advertisement

Log in

Modeling fertilization impacts on nitrate leaching and groundwater contamination with HYDRUS-1D and MT3DMS

  • Article
  • Published:
Paddy and Water Environment Aims and scope Submit manuscript

Abstract

Agriculture is recognized as the major source of groundwater nitrate (NO3) contamination; yet quantifying its effects is still challenging in large, due to the difficulty to track the transformation and fates of agricultural nitrogen (N) in soils and aquifers. In this study, a HYDRUS-1D model was adopted to explore water content and NO3 distribution in the unsaturated zone above groundwater table in an agricultural area. The resulting estimates of water flux and NO3 leaching through the unsaturated zone were used as input data in the application of the groundwater flow model Visual MODFLOW and mass transport model MT3DMS via a concentration recharge boundary. Nitrate leaching occurred mainly between May and September, accounting for 64% of the annual total. Four fertilizer application scenarios were developed, and their effects were compared in predictive simulations of groundwater NO3 concentrations using MT3DMS and quantitative analysis of NO3-contaminated areas, the spatial and temporal distribution of groundwater NO3 concentration using ArcGIS. Predictions in the business as usual (scenario 1) showed that NO3 continued to accumulate in groundwater in the study area, with the maximum increased from 14 to 18 mg L−1 in 10 years. In the scenario 2 (2% increase in fertilizer application rate), peak groundwater NO3 was expected to exceed 20 mg L−1 in 2027. However, in both scenarios 3 (2% reduction in fertilizer application) and 4 (4% reduction in fertilization), the maximal NO3 concentrations were predicted to be lower than 12 mg L−1 in 2027. The integration of HYDRUS-1D, MT3DMS and GIS models offers a powerful tool for evaluating agricultural management impacts on aquifer water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ahada CPS, Suthar S (2018) Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India. Environ Sci Pollut Res 25(25):336–347

    Article  CAS  Google Scholar 

  • Ako AA, Shimada J, Hosono T, Ichiyanagi K, Nkeng EG, Fantong YW, Eyong GE, Roger NN (2011) Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line. Environ Geochem Health 33(6):559–575

    Article  CAS  PubMed  Google Scholar 

  • Al-Khateeb M, Shakir E, Abdul Kareem ML, Al-Obaidy HA (2016) Spatial distribution and partition coefficient of nutrient in water and sediment of Shatt Al-Basrah Canal, Iraq. Mesopo Environ J 3(1):25–36

    Google Scholar 

  • Anlauf R, Schaefer J, Kajitvichyanukul P (2018) Coupling HYDRUS-1D with ArcGIS to estimate pesticide accumulation and leaching risk on a regional basis. J Environ Manag 217:980–990

    Article  Google Scholar 

  • Arregui LM, Quemada M (2006) Drainage and nitrate leaching in a crop rotation under different N-fertilizer strategies: application of capacitance probes. Plant Soil 288:57–69

    Article  CAS  Google Scholar 

  • Arslan H, Turan AN, Demir Y, Güngör A, Cemek B (2017) Assessment of spatial and seasonal changes in groundwater nitrate pollution of agricultural lands through ordinary and indicator kriging techniques. Arch Agron Soil Sci 63(7):907–917

    Article  CAS  Google Scholar 

  • Bashir R, Chevez PE (2018) Spatial and seasonal variations of water and salt movement in the vadose zone at salt-impacted sites. Water 10:1833. https://doi.org/10.3390/w10121833

    Article  CAS  Google Scholar 

  • Beegum S, Šimůnek J, Szymkiewicz A, Sudheer PK, Nambi MI (2018) Implementation of solute transport in the vadose zone into the ‘‘HYDRUS Package for MODFLOW’’. Groundwater 52(4):1–17

    Google Scholar 

  • Benson VS, VanLeeuwen JA, Sanchez J, Dohoo IR, Somers GH (2006) Spatial analysis of land use impact on ground water nitrate concentrations. J Environ Qual 35(2):421–432

    Article  CAS  PubMed  Google Scholar 

  • Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Groundwater 50(2):170–176

    Article  CAS  Google Scholar 

  • Buresh RJ, Datta SK, Samson MI, Phongpan S, Snitwongse P, Fagi AM, Tejasarwana R (1991) Dinitrogen and nitrous oxide flux from urea basely applied to puddled rice soils. Soil Sci Soc Am J 55:268–273

    Article  CAS  Google Scholar 

  • Burkart MR, Kolpin DW (1993) Hydrologic and land use factors associated with herbicides and nitrates in near-surface aquifers. J Environ Qual 22:646–656

    Article  CAS  Google Scholar 

  • Cameira MR, Fernando RM, Ahuja LR, Ma LW (2007) Using RZWQM to simulate the fate of nitrogen in field soil–crop environment in the Mediterranean region. Agric Water Manag 90:121–136

    Article  Google Scholar 

  • CDUT (2013) Jingyang groundwater resources survey and evaluation report. Chengdu University of Technology and Jingyang Water Bureau, Chengdu

    Google Scholar 

  • Chen W, Lu S, Pan N, Jiao W (2013) Impacts of long-term reclaimed water irrigation on soil salinity accumulation in urban green land in Beijing. Water Resour Res 49(11):7401–7410

    Article  CAS  Google Scholar 

  • CHGET (1997) Jingyang regional hydrogeology report, Chengdu Hydrogeological and Geological Engineering Team of Sichuan Geological Prospecting Bureau, 1:25,000

  • Dash CJ, Sarangi A, Adhikary PP, Singh KD (2016) Simulation of nitrate leaching under maize-wheat cropping system in a semiarid irrigated area of the Indo-Gangetic Plain. India. J Irrig Drain Eng 142(2):1–11

    Google Scholar 

  • Ebrahimian H, Liaghat A, Parsinejad M, Playán E, Abbasi F, Navabian M (2013) Simulation of 1D surface and 2D subsurface water flow and nitrate transport in alternate and conventional furrow fertigation. Irrig Sci 31(3):301–316

    Article  Google Scholar 

  • Ehteshami M, Langeroudi SA, Tavassoli S (2013) Simulation of nitrate contamination in groundwater caused by livestock industry (case Study: Rey). J Environ Prot 4:91–97

    Article  CAS  Google Scholar 

  • Engström L, Stenberg M, Aronsson H, Lindén B (2011) Reducing nitrate leaching after winter oilseed rape and peas in mild and cold winters. Agron Sustain Dev 31(2):337–347

    Article  Google Scholar 

  • Exner EM, Perea-Estrada H, Spalding FR (2010) Long-term response of groundwater nitrate concentrations to management regulations in Nebraska’s Central Platte Valley. Sci World J 10:286–297

    Article  CAS  Google Scholar 

  • Feddes AR, Zaradny H (1978) Model for simulating soil-water content considering evapotranspiration. J Hydrol 37:393–397

    Article  Google Scholar 

  • GB/T 32737 (2016) Determination of nitrate nitrogen in soil Ultraviolet spectrophotometry method. National Standard (in Chinese)

  • George T, Ladha JK, Buresh RJ, Garrity DP (1992) Managing native and legume fixed N in lowland rice based cropping systems. Plant Soil 141:69–91

    Article  CAS  Google Scholar 

  • Haj-Amor Z, Bouri S (2019) Use of HYDRUS-1D-GIS tool for evaluating effects of climate changes on soil salinization and irrigation management. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2019.1608438

    Article  Google Scholar 

  • Hamilton SK (2011) Biogeochemical lags may delay responses of streams to ecological restoration. Freshw Biol 57(1):43–57

    Google Scholar 

  • Hanson RB, Šimůnek J, Hopmans WJ (2006) Evaluation of urea-ammonium-nitrate fertilization with drip irrigation using numerical modeling. Agric Water Manag 86:102–113

    Article  Google Scholar 

  • Hao FH, Sun W, Zeng AY, Li P, Zhang JX, Yue Y (2008) Simulation of N transfer under different irrigation and the Hetao irrigation area using HYDRUS-1D model. Acta Sci Circumst 28(5):853–858 (In Chinese)

    CAS  Google Scholar 

  • He SJ, Liu J (2016) Contribution of baseflow nitrate export to non-point source pollution. Sci China 59(10):1912–1929

    Article  CAS  Google Scholar 

  • Howden NJK, Burt TP, Worrall F, Mathias S, Whelan MJ (2011) Nitrate pollution in intensively farmed regions: what are the prospects for sustaining high-quality groundwater? Water Resour Res 47(6):1–13

    Article  Google Scholar 

  • Hu K, Li B, Chen D, Zhang Y, Edis R (2008) Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in inner mongolia, china. Agric Water Manag 95(10):1180–1188

    Article  Google Scholar 

  • Hu W, Wang QY, Li JH, Huang BM, Hou TM, Li Z, She LD, Si CS (2019) Dominant role of climate in determining spatio-temporal distribution of potential groundwater recharge at a regional scale. J Hydrol 578:24–42

    Article  Google Scholar 

  • Huang J, Xu J, Liu X, Liu J, Wang L (2011) Spatial distribution pattern analysis of groundwater nitrate nitrogen pollution in Shandong intensive farming regions of China using neural network method. Math Comput Model 54(3):995–1004

    Article  Google Scholar 

  • Jackson BM, Wheater HS, Wade AJ, Butterfield D, Mathias SA, Ireson AM, Butler AP, McIntyre NR, Whitehead PG (2007) Catchment-scale modelling of flow and nutrient transport in chalk unsaturated zone. Ecol Model 209(1):41–52

    Article  Google Scholar 

  • Jackson BM, Browne CA, Butler AP, Peach D, Wade AJ, Wheater HS (2008) Nitrate transport in chalk catchments: monitoring, modelling and policy implications. Environ Sci Policy 12(2):125–135

    Article  Google Scholar 

  • Jiang Y, Nyiraneza J, Murray BJ, Chapman S, Malenica A, Parker B (2017) Vadose zone processes delaying groundwater nitrate reduction to bmp implementation observed in paired cultivated vs. uncultivated potato rotation fields. J Hydrol 555:760–776

    Article  CAS  Google Scholar 

  • Jyotiprava Dash C, Sarangi A, Singh DK, Singh AK, Adhikary PP (2015) Prediction of root zone water and nitrogen balance in an irrigated rice field using a simulation model. Paddy Water Environ 13:281–290

    Article  Google Scholar 

  • Kandelous MM, Kamai T, Vrugt JA, Simunek J, Hanson B, Hopmans JW (2012) Evaluation of subsurface drip irrigation design and management parameters for Alfalfa. Agric Water Manag 109:81–93

    Article  Google Scholar 

  • Klammler G, Kupfersberger H, Rock G, Fank J (2013) Modeling coupled unsaturated and saturated nitrate distribution of the aquifer Westliches Leibnitzer Feld, Austria. Environ Earth Sci 69:663–678

    Article  CAS  Google Scholar 

  • Leterme B (2015) Unsaturated flow modeling with HYDRUS and UZF: calibration and intercomparison. In: Proceedings of MODFLOW and more: modeling a complex world, at Golden, CO

  • Li DY (2016) Study on groundwater recharge of agricultural activity area based on soil water balance. Dissertation, Southwest Jiaotong University, Chengdu (in Chinese)

  • Li XX, Hu CS, Delgado JA, Zhang YM, Ouyang ZY (2007) Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agric Water Manag 89(1–2):137–147

    Article  Google Scholar 

  • Li J, Lu WX, Zeng XK, Yuan JH, Yu FR (2010) Analysis of spatial–temporal distributions of nitrate-N concentration in Shitoukoumen catchment in northeast China. Environ Monit Assess 169:335–345

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wu J, Qian H, Lyu X, Liu H (2014) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36(4):693–712

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Šim°unek J, Zhang Z, Jing L, Ni L (2015) Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D. Agric Water Manag 148:213–222

    Article  Google Scholar 

  • Ling G, EL-Kadi AL (1998) A lumped parameter model for nitrogen transformation in the unsaturated zone. Water Resour Res 34(2):203–212

    Article  CAS  Google Scholar 

  • Liu M, Seyf-Laye ASM, Ibrahim T, Gbandi DB, Chen H (2014) Tracking sources of groundwater nitrate contamination using nitrogen and oxygen stable isotopes at Beijing area, China. Environ Earth Sci 72(3):707–715

    Article  CAS  Google Scholar 

  • Liu YF, Zeng SB, Tang JD, Zeng SJ, Zhang MH (2015) Characteristics of agricultural fertilizer and pesticide application in Guangdong province in 1987-2013. Trop Agric Eng 39(2):29–32 (in Chinese)

    Google Scholar 

  • Luan J, Chou HG, Jing Y, Liao SP, Han W (2013) Cause decomposition and trend prediction of continuous growth of chemical fertilizer application in China. J Nat Resour 28(11):1869–1878 (in Chinese)

    Google Scholar 

  • Lyu S, Chen W, Wen XF, Chang CA (2019) Integration of HYDRUS-1D and MODFLOW for evaluating the dynamics of salts and nitrogen in groundwater under long-term reclaimed water irrigation. Irrig Sci 37:35–47

    Article  Google Scholar 

  • Macdonald AJ, Powlson DS, Poulton PR, Jenkinson DS (1989) Unused fertiliser nitrogen in arable soils-its contribution to nitrate leaching. J Sci Food Agric 46:407–419

    Article  CAS  Google Scholar 

  • Mack UD, Feger KH, Gong Y, Stahr K (2005) Soil water balance and nitrate leaching in winter wheat–summer maize double-cropping systems with different irrigation and N fertilization in the North China Plain. J Plant Nutr Soil Sci 16:454–460

    Article  CAS  Google Scholar 

  • Marinov I, Marinov AM (2014) A Coupled mathematical model to predict the influence of nitrogen fertilization on crop, soil and groundwater quality. Water Resour Manag 28:5231–5246

    Article  Google Scholar 

  • Martin C, Aquilina L, Gascuel-Odoux C, Molenat J, Faucheux M, Ruiz L (2004) Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments. Hydrol Process 18:1237–1254

    Article  Google Scholar 

  • McLay CDAR, Dragten G, Sparling N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115(2):191–204

    Article  CAS  PubMed  Google Scholar 

  • Mellander EP, Melland RA, Murphy PNC, Wall PD, Shortle G, Jordan P (2014) Coupling of surface water and groundwater nitrate-N dynamics in two permeable agricultural catchments. J Agric Sci 152:107–124

    Article  CAS  Google Scholar 

  • Moallim AA, Kamal RM, Muhammed HH, Mohd Soom AM, Zawawi MM, Wayayok A, Man CH (2018) Assessment of nutrient leaching in flooded paddy rice field experiment using Hydrus-1D. Water 10(6):785. https://doi.org/10.3390/w10060785

    Article  CAS  Google Scholar 

  • Mohsenipour M, Shahid S, Ebrahimi K (2015) Nitrate adsorption on clay Kaolin: batch tests. J Chem 10(3):1–7

    Article  CAS  Google Scholar 

  • Morway DE, Niswonger GR, Langevin DC, Bailey TR, Healy WR (2013) Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS. Groundwater 51(2):237–251

    CAS  Google Scholar 

  • Niswonger RG, Prudic DE, Regan SR (2006) Documentation of the Unsaturated-Zone Flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005. U.S. Geological Survey Techniques and Methods, 71. Reston, Virginia: U.S. Department of the Interior

  • Paramasivam S, Alva AK, Fares A, Sajwan KS (2002) Fate of nitrate and bromide in an unsaturated zone of a sandy soil under citrus production. J Environ Qual 31(2):671–681

    Article  CAS  PubMed  Google Scholar 

  • Parashar DC, Kulshreshtha UC, Sharma C (1998) Anthropogenic emissions of NOx, NH3 and N2O in India. Nutri Cycle Agro Ecosyst 52:255–259

    Article  CAS  Google Scholar 

  • Pathak H, Timsina J, Humphreys E, Godwin DC, Singh B, Shukla AK (2003) Simulation of rice crop performance and water, nitrogen and carbon dynamics in northwest India using CERES Rice 4.0 model. CSIRO Land and Water Technical Report. Griffith, Australia: CSIRO

  • Phogat V, Yadav AK, Malik RS, Kumar S, Cox J (2010) Simulation of salt and water movement and estimation of water productivity of rice crop irrigated with saline water. Paddy Water Environ 8:333–346

    Article  Google Scholar 

  • Qian JZ, Wang LL, Liu Y, Wu BR, Wang XM (2015) Distribution of nitrate and its implication for the contaminant source in groundwater of Huaibei Plain, Anhui Province. Geosci J 19(3):537–545

    Article  CAS  Google Scholar 

  • Ragab R, Bromley J (2010) IHMS-integrated hydrological modelling system. Part 1. Hydrological processes and general structure. Hydrol Process 24(19):2663–2680

    Article  Google Scholar 

  • Saâdi M, Zghibi A, Kanzari S (2018) Modeling interactions between saturated and un-saturated zones by Hydrus-1D in semi-arid regions (plain of Kairouan, Central Tunisia). Environ Monit Assess 190:629–647

    Article  PubMed  Google Scholar 

  • Schaap MG, Leij FJ, van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176

    Article  Google Scholar 

  • Shahrokhnia HM, Sepaskhah RA (2018) Water and nitrate dynamics in safflower field lysimeters under different irrigation strategies, planting methods, and nitrogen fertilization and application of HYDRUS-1D model. Environ Sci Pollut Res 25:8563–8580

    Article  CAS  Google Scholar 

  • Shishaye AH (2015) Simulations of nitrate leaching from sugarcane farm in Metahara, Ethiopia, using the LEACHN Model. J Water Resour Prot 7:665–688

    Article  CAS  Google Scholar 

  • Šimůnek J, Šejna M, Saito H, Sakai M, van Genuchten MT (2009) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Department of Environmental Sciences, University of California, Riverside, CA

  • Šimůnek J, van Genuchten MT, Sejn M (2016) Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J 15(7):1–25

    Article  Google Scholar 

  • Singh S, Coppi L, Wang Z, Tenuta M, Hollander MH (2019) Regionalisation of nitrate leaching on pasture land in Southern Manitoba. Agric Water Manag 222:286–300

    Article  Google Scholar 

  • Šípek V, Jačka L, Seyedsadr S, Trakal L (2019) Manifestation of spatial and temporal variability of soil hydraulic properties in the uncultivated Fluvisol and performance of hydrological model. CATENA 182:104–119

    Article  Google Scholar 

  • Sousa RM, Jones PJ, Frind OE, Rudolph LD (2013) A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor. J Contam Hydrol 144(1):138–151

    Article  CAS  PubMed  Google Scholar 

  • Stuart ME, Chilton PJ, Kinniburgh DG, Cooper DM (2007) Screening for long-term trends in groundwater nitrate monitoring data. Q J Eng Geol Hydrogeol 40:361–376

    Article  CAS  Google Scholar 

  • Suthar S, Bishnoi P, Singh S, Mutiyar PK, Nema AK, Patil NS (2009) Nitrate contamination in groundwater of some rural areas of Rajasthan, India. J Hazard Mater 171(1–3):189–199

    Article  CAS  PubMed  Google Scholar 

  • Tafteh A, Sepaskhah AR (2012) Application of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields. Agric Water Manag 113:19–29

    Article  Google Scholar 

  • Tan X, Shao D, Gu W, Liu H (2015) Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agric Water Manag 150:67–80

    Article  Google Scholar 

  • Tonkul S, Baba A, Simsek C, Durukan S, Demirkesen CA, Tayfur G (2019) Groundwater recharge estimation using HYDRUS 1D model in Alaşehir sub-basin of Gediz Basin in Turkey. Environ Monit Assess 191:610. https://doi.org/10.1007/s10661-019-7792-6

    Article  PubMed  Google Scholar 

  • Turkeltaub T, Jia XX, Zhu YJ, Shao MA, Binley A (2018) Recharge and nitrate transport through the deep vadose zone of the Loess Plateau: a regional-scale model investigation. Water Resour Res 54(7):4332–4346

    Article  CAS  Google Scholar 

  • Twarakavi NKC, Šimůnek J, Seo S (2008) Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone J 7(2):757–768

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Van Meter KJ, Basu NB, Hong YG (2015) Catchment legacies and time lags: a parsimonious watershed model to predict the effects of legacy storage on nitrogen export. PLoS ONE. https://doi.org/10.1371/journal.pone.0125971

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Meter KJ, Basu NB, Veenstra JJ, Burras CL (2016) The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/3/035014

    Article  Google Scholar 

  • Vero SE, Ibrahim TG, Creamer RE, Grant J, Healy MG, Henry T, Kramers G, Richards KG, Fenton O (2014) Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates. J Contam Hydrol 170:53–67

    Article  CAS  PubMed  Google Scholar 

  • Vero SE, Basu NB, Van Meter K et al (2018) Review: the environmental status and implications of the nitrate time lag in Europe and North America. Hydrogeol J 26:7–22

    Article  CAS  Google Scholar 

  • Wallis KJ, Candela L, Mateos RM, Tamoh K (2011) Simulation of nitrate leaching under potato crops in a Mediterranean area Influence of frost prevention irrigation on nitrogen transport. Agric Water Manag 98(10):1629–1640

    Article  Google Scholar 

  • Wang L, Stuart ME, Bloomfield JP, Butcher AS, Gooddy DC, McKenzie AA, Lewis MA, Williams AT (2012) Prediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great Britain. Hydrol Process 26(2):226–239

    Article  CAS  Google Scholar 

  • Wang L, Stuart ME, Lewis MA, Skirvin D, Naden PS, Collins AL, Ascott MJ (2016) The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150. Sci Total Environ 542:694–705

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Shao Y (2002) A salt-transport model within a land-surface scheme for studies of salinisation in irrigated areas. Environ Model Softw 17(1):39–49

    Article  Google Scholar 

  • Xu X, Huang G, Zhan H, Qu Z, Huang Q (2012) Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. J Hydrol 412–413:170–181

    Article  Google Scholar 

  • Xu QG, Xi BD, He XS (2013) Risk assessment and system management of pesticide pollution groundwater in agricultural activity area. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Yan XY, Zhou W (2018) Groundwater nitrate removal through denitrification under farmland in Yangtze River Delta. Acta Pedol Sin 11:23–37 (In Chinese)

    Google Scholar 

  • Yang YS, Wang L (2010) A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resour Manag 24:1819–1843

    Article  Google Scholar 

  • Yang T, Šimůnek J, Mo M, Mccullough-Sanden B, Shahrokhnia H, Cherchian S, Wu L (2019) Assessing salinity leaching efficiency in three soils by the HYDRUS-1D and -2D simulations. Soil Tillage Res 194:104342. https://doi.org/10.1016/j.still.2019.104342

    Article  Google Scholar 

  • Yu HM, Li ZZ, Gong YS, Mack U, Feger KH, Stahr K (2006) Water drainage and nitrate leaching under traditional and improved management of vegetable-cropping systems in the North China Plain. J Plant Nutr Soil Sci 169:47–51

    Article  CAS  Google Scholar 

  • Zeng WZ, Lei GQ, Zhang HY, Hong H, Xu C, Wu JW, Huang JS (2017) Estimating root zone moisture from surface soil using limited data. Nephron Clin Pract 24(4):501–516

    Google Scholar 

  • Zhang YN (2019) Study on coupling model of surface water and groundwater based on HYDRUS-MODFLOW. Dissertation, Zhengzhou University (in Chinese)

  • Zhang H, Hiscock MK (2011) Modelling the effect of forest cover in mitigating nitrate contamination of groundwater: a case study of the Sherwood Sandstone aquifer in the East Midlands, UK. J Hydrol 399(3):212–225

    Article  Google Scholar 

  • Zhang H, Hiscock MK (2016) Modelling response of groundwater nitrate concentration in public supply wells to land-use change. J Eng Geol Hydrogeol 49(2):170–182

    Article  CAS  Google Scholar 

  • Zhang H, Xu WL, Hiscock MK (2013) Application of MT3DMS and geographic information system to evaluation of groundwater contamination in the Sherwood Sandstone Aquifer, UK. Water Air Soil Pollut 224(2):1–19

    Google Scholar 

  • Zhang H, Yang RX, Wang Y, Ye RZ (2019) The evaluation and prediction of agriculture-related nitrate contamination in groundwater in Chengdu Plain, southwestern China. Hydrogeol J 27(2):785–799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 51979237) and Sichuan Province Science and Technology Support Program, China (Grant No. 19YYJC0695).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yang, R., Guo, S. et al. Modeling fertilization impacts on nitrate leaching and groundwater contamination with HYDRUS-1D and MT3DMS. Paddy Water Environ 18, 481–498 (2020). https://doi.org/10.1007/s10333-020-00796-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10333-020-00796-6

Keywords

Navigation