Skip to main content
Log in

\(\mathbf{L^2}\)-decay rate for the critical nonlinear Schrödinger equation with a small smooth data

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for the one dimensional nonlinear dissipative Schrödinger equation with a cubic nonlinearity \(\lambda |u|^2u\), where \(\lambda \in {\mathbb {C}}\) with Im \(\lambda < 0\). We show that a relation between \(L^2\)-decay rate for the solution and a smoothness of the initial data. Our result improves the recent work of Hayashi–Li–Naumkin (Adv Math Phys Art. ID 3702738, 7, 2016) for the decay rate of \(L^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barab, J.: Nonexistence of asymptotically free solutions of a nonlinear Schrödinger equation. J. Math. Phys. 25, 3270–3273 (1984)

    Google Scholar 

  2. Cazenave, T.: Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI

  3. Cazenave, T., Weissler, F.: The Cauchy problem for the nonlinear Schrödinger equation in \(H^1\). Manuscr. Math. 61(4), 477–494 (1988)

    Google Scholar 

  4. Ginible, J., Ozawa, T.: Long range scattering for nonlinear Schröinger and Hartree equations in space dimension \(n \ge 2\). Commun. Math. Phys. 151, 619–645 (1993)

    Google Scholar 

  5. Ginible, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32(1), 1–31 (1979)

    Google Scholar 

  6. Ginible, J., Velo, G.: On a class of nonlinear Schrödinger equations. II. Scattering theory, general case. J. Funct. Anal. 32(1), 33–71 (1979)

    Google Scholar 

  7. Hayashi, N., Naumkin, P.: Asymptotics for large time of solutions to nonlinear Schrödinger and Hartree equations. Am. J. Math. 120, 369–389 (1998)

    Google Scholar 

  8. Hayashi, N., Li, C., Naumkin, P.I.: Time decay for nonlinear dissipative Schrödinger equations in optical fields, Adv. Math. Phys. Art. ID 3702738, 7 (2016)

  9. Hayashi, N., Ozawa, T.: Scattering theory in the weighted \(L^2(\mathbb{R})\) spaces for some Schrödinger equation. Ann. Inst. H. Poincaré Phys. Théor 48, 17–37 (1988)

    Google Scholar 

  10. Hoshino, G.: Analyticity of solutions to a quadratic system of Schrödinger equations without mass resonance condition. J. Math. Anal. Appl. 467(1), 331–348 (2018)

    Google Scholar 

  11. Hoshino, G.: Asymptotic behavior for solutions to the dissipative nonlinear Scrödinger equations with the fractional Sobolev space. J. Math. Phys. 60(11), 111504, 11 (2019)

    Google Scholar 

  12. Hoshino, G., Ozawa, T.: Analytic smoothing effect for nonlinear Schrödingier equations with quintic nonlinearity. J. Math. Anal. Appl. 419, 285–297 (2014)

    Google Scholar 

  13. Hoshino, G., Hyakuna, R.: Analytic smoothing effect for the nonlinear Schrödinger equations without square integrability. J. Fourier Anal. Appl. 24(6), 1661–1680 (2018)

    Google Scholar 

  14. Katayama, S., Li, C., Sunagawa, H.: A remark on decay rates of solutions for a system of quadratic nonlinear Schrödinger equations in 2D. Differ. Integr. Equ. 27, 301–312 (2014)

    Google Scholar 

  15. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Google Scholar 

  16. Kim, D.: A note on decay rates of solutions to a system of cubic nonlinear Schrödinger equations in one space dimension. Asymptot. Anal. 98(1-2), 79–90 (2016)

    Google Scholar 

  17. Kita, N., Shimomura, A.: Asymptotic behavior of solutions to Schrödinger equations with a subcritical dissipative nonlinearity. J. Differ. Equ. 242(1), 192–210 (2007)

    Google Scholar 

  18. Kita, N., Shimomura, A.: Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data. J. Math. Soc. Jpn. 61(1), 39–64 (2009)

    Google Scholar 

  19. Ozawa, T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139, 479–493 (1991)

    Google Scholar 

  20. Sunagawa, H.: Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms. J. Math. Soc. Jpn. 58, 379–400 (2006)

    Google Scholar 

  21. Simomura, A.: Asymtotic behavior of solutions for Schrödinger equations with dissipative nonlinearities. Commun. Part. Differ. Equ. 31, 1407–1423 (2006)

    Google Scholar 

  22. Strauss, W.A.: Nonlinear scattering theory at low energy. J. Funct. Anal. 41, 110–133 (1981)

    Google Scholar 

  23. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidian Spaces, Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1971). Reprint of the second edition

    Google Scholar 

  24. Simon, J., Taflin, E.: Wave operators and analytic solutions of nonlinear Klein–Gordon equations and of nonlinear Schrödinger equations. Commun. Math. Phys. 99, 541–562 (1985)

    Google Scholar 

  25. Tsutsumi, Y., Yajima, K.: The asymptotic behavior of nonlinear Schrödinger equations. Bull. Am. Math. Soc. 11, 186–188 (1984)

    Google Scholar 

  26. Yajima, K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Sato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, T., Sato, T. \(\mathbf{L^2}\)-decay rate for the critical nonlinear Schrödinger equation with a small smooth data. Nonlinear Differ. Equ. Appl. 27, 18 (2020). https://doi.org/10.1007/s00030-020-0621-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-020-0621-3

Mathematics Subject Classification

Navigation