Skip to main content
Log in

Equivariant motivic integration and proof of the integral identity conjecture for regular functions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We develop Denef–Loeser’s motivic integration to an equivariant version and use it to prove the full integral identity conjecture for regular functions. In comparison with Hartmann’s work, the equivariant Grothendieck ring defined in this article is more elementary and it yields the application to the conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batyrev, V.V.: Birational Calabi–Yau n-folds have equal Betti numbers. In: New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., vol. 264, pp. 1–11. Cambridge Univ. Press, Cambridge (1996)

  2. Cluckers, R., Loeser, F.: Constructible motivic functions and motivic integration. Invent. Math. 173(1), 23–121 (2008)

    Article  MathSciNet  Google Scholar 

  3. Denef, J., Loeser, F.: Motivic Igusa zeta functions. J. Algebraic Geom. 7, 505–537 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Denef, J., Loeser, F.: Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135, 201–232 (1999)

    Article  MathSciNet  Google Scholar 

  5. Denef, J., Loeser, F.: Lefschetz numbers of iterates of the monodromy and truncated arcs. Topology 41(5), 1031–1040 (2002)

    Article  MathSciNet  Google Scholar 

  6. Guibert, G.: Espaces d’arcs et invariants d’Alexander. Comment. Math. Helv. 77, 783–820 (2002)

    Article  MathSciNet  Google Scholar 

  7. Guibert, G., Loeser, F., Merle, M.: Iterated vanishing cycles, convolution, and a motivic analogue of the conjecture of Steenbrink. Duke Math. J. 132(3), 409–457 (2006)

    Article  MathSciNet  Google Scholar 

  8. Grothendieck, A.: Revêtements étales et groupe fondamental, Fasc. I: Exposés 1 à 5, volume 1960/61 of Séminaire de Géométrie Algébrique. Institut des Hautes Études Scientifiques, Paris (1963)

  9. Grothendieck, A.: Éléments de géométrie algébrique. IV, Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math., t. 28 (1966)

  10. Hartmann, A.: Equivariant motivic integration on formal schemes and the motivic zeta function. J. Commun. Algebra 47(4), 1423–1463 (2019)

    Article  MathSciNet  Google Scholar 

  11. Hrushovski, E., Kazhdan, D.: Integration in valued fields. In: Algebraic and Number Theory, Progress in Mathematics, vol. 253, pp. 261–405. Birkhäuser (2006)

  12. Hrushovski, E., Loeser, F.: Monodromy and the Lefschetz fixed point formula. Ann. Sci. École Norm. Sup. 48(2), 313–349 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donalson–Thomas invariants and cluster transformations. arXiv:0811.2435vl

  14. Lê, Q.T.: On a conjecture of Kontsevich and Soibelman. Algebra Number Theory 6(2), 389–404 (2012)

    Article  MathSciNet  Google Scholar 

  15. Lê, Q.T.: Proofs of the integral identity conjecture over algebraically closed fields. Duke Math. J. 164(1), 157–194 (2015)

    Article  MathSciNet  Google Scholar 

  16. Lê, Q.T.: A short survey on the integral identity conjecture and theories of motivic integration. Acta Math. Vietnam 42(2), 289–310 (2017)

    Article  MathSciNet  Google Scholar 

  17. Loeser, F., Sebag, J.: Motivic integration on smooth rigid varieties and invariants of degenerations. Duke Math. J. 119(2), 315–344 (2003)

    Article  MathSciNet  Google Scholar 

  18. Looijenga, E.: Motivic measures. Astérisque 276, 267–297 (2002). (Séminaire Bourbaki 1999/2000, No. 874)

    MathSciNet  MATH  Google Scholar 

  19. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariants theory, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34. Springer, Berlin (1994)

  20. Nicaise, J.: A trace formula for rigid varieties, and motivic Weil generating series for formal schemes. Math. Ann. 343, 285–349 (2009)

    Article  MathSciNet  Google Scholar 

  21. Nicaise, J., Sebag, J.: Motivic Serre invariants, ramification, and the analytic Milnor fiber. Invent. Math. 168(1), 133–173 (2007)

    Article  MathSciNet  Google Scholar 

  22. Nicaise, J., Payne, S.: A tropical motivic Fubini theorem with applications to Donaldson-Thomas theory. Duke Math. J. 168(10), 1843–1886 (2019)

    Article  MathSciNet  Google Scholar 

  23. Sebag, J.: Intégration motivique sur les schémas formels. Bull. Soc. Math. France 132(1), 1–54 (2004). (Séminaire Bourbaki 1999/2000, No. 874)

    Article  MathSciNet  Google Scholar 

  24. Stacks Project Authors.: Stacks Project (2019)

Download references

Acknowledgements

This article was partially written during the authors’ visits to Department of Mathematics-KU Leuven in December 2017 and Vietnam Institute for Advanced Studies in Mathematics in January 2018. The authors thank sincerely these institutions for excellent atmospheres and warm hospitalities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quy Thuong Lê.

Additional information

Communicated by Vasudevan Srinivas.

Dedicated to Professor Gert-Martin Greuel on the occasion of his seventy-fifth birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lê Quy Thuong research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number FWO.101.2015.02. Nguyen Hong Duc research is partially supported by the Basque Government through the BERC 2018-2021 program and Gobierno Vasco Grant IT1094-16, by the Spanish Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-0718, by the ERCEA Consolidator Grant 615655 NMST and by Juan de la Cierva Incorporación IJCI-2016-29891.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lê, Q.T., Nguyen, H.D. Equivariant motivic integration and proof of the integral identity conjecture for regular functions. Math. Ann. 376, 1195–1223 (2020). https://doi.org/10.1007/s00208-019-01940-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01940-2

Mathematics Subject Classification

Navigation