Skip to main content
Log in

Van Est differentiation and integration

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The classical Van Est theory relates the smooth cohomology of Lie groups with the cohomology of the associated Lie algebra, or its relative versions. Some aspects of this theory generalize to Lie groupoids and their Lie algebroids. In this paper, continuing an idea from Li-Bland and Meinrenken (Enseign Math 61(1–2):93–137, 2015), we revisit the van Est theory using the Perturbation Lemma from homological algebra. Using this technique, we obtain precise results for the van Est differentiation and integrations maps at the level of cochains. Specifically, we construct homotopy inverses to the van Est differentiation maps that are right inverses at the cochain level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abad, C., Crainic, M.: The Weil algebra and the Van Est isomorphism. Ann. Inst. Fourier (Grenoble) 61(3), 927–970 (2011)

    Article  MathSciNet  Google Scholar 

  2. Borel, A.: Semisimple Groups and Riemannian Symmetric Spaces, Texts and Readings in Mathematics, vol. 16. Hindustan Book Agency, New Delhi (1998)

    Book  Google Scholar 

  3. Bott, R., Tu, L.: Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82. Springer, New York (1982)

    Book  Google Scholar 

  4. Brown, R.: The twisted Eilenberg-Zilber theorem, Simposio diTopologia (Messina, : Edizioni Oderisi). Gubbio 1965, 33–37 (1964)

  5. Cabrera, A., Drummond, T.: Van Est isomorphism for homogeneous cochains. Pac. J. Math. 287(2), 297–336 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cabrera, A., Marcut, I., Salazar, A.: On local integration of Lie brackets. Journal für die reine und angewandte Mathematik (2018). https://doi.org/10.1515/crelle-2018-0011

    Article  MATH  Google Scholar 

  7. Crainic, M.: Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes. Comment. Math. Helv. 78(4), 681–721 (2003)

    Article  MathSciNet  Google Scholar 

  8. Crainic, M., Fernandes, R.L.: Lectures on Integrability of Lie Brackets, Lectures on Poisson Geometry, Geom. Topol. Monogr., vol. 17, Geom. Topol. Publ., Coventry, pp. 1–107 (2011)

  9. Crainic, M., Mestre, J.N.: Orbispaces as differentiable stratified spaces. Lett. Math. Phys. 108(3), 805–859 (2018)

    Article  MathSciNet  Google Scholar 

  10. Dufour, J.-P., Zung, N.T.: Poisson Structures and their Normal Forms, Progress in Mathematics, vol. 242. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  11. Dupont, J.L.: Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15(3), 233–245 (1976)

    Article  MathSciNet  Google Scholar 

  12. Dupont, J.L., Guichardet, A.: à propos de l’article: “Sur la cohomologie réelle des groupes de Lie simples réels” [Ann. Sci. Ećole Norm. Sup. (4) 11 (1978), no. 2, 277–292] par Guichardet et D. Wigner, Ann. Sci. École Norm. Sup. (4) 11(2), 293–295

  13. Gugenheim, V.: On the chain-complex of a fibration. Ill. J. Math. 16, 398–414 (1972)

    Article  MathSciNet  Google Scholar 

  14. Guichardet, A.: Cohomologie des groupes topologiques et des algèbres de Lie, Textes Mathématiques [Mathematical Texts], vol. 2. CEDIC, Paris (1980)

    MATH  Google Scholar 

  15. Guichardet, A., Wigner, D.: Sur la cohomologie réelle des groupes de Lie simples réels. Ann. Sci. École Norm. Sup. (4) 11(2), 277–292 (1978)

    Article  MathSciNet  Google Scholar 

  16. Houard, J.-C.: An integral formula for cocycles of Lie groups. Ann. Inst. H. Poincaré Sect. A (N.S.) 32(3), 221–247 (1980)

    MathSciNet  MATH  Google Scholar 

  17. Sze-tsen, Hu: Cohomology theory in topological groups. Mich. Math. J. 1, 11–59 (1952)

    Article  MathSciNet  Google Scholar 

  18. Li-Bland, D., Meinrenken, E.: On the van Est homomorphism for Lie groupoids. Enseign. Math. 61(1–2), 93–137 (2015)

    Article  MathSciNet  Google Scholar 

  19. Mehta, R.: \(Q\)-groupoids and their cohomology. Pac. J. Math. 242(2), 311–332 (2009)

    Article  MathSciNet  Google Scholar 

  20. Moerdijk, I., Mrčun, J.: Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics, vol. 91. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  21. Mostow, M., Perchik, J.: Notes on Gelfand–Fuks cohomology and characteristic classes (lectures delivered by R. Bott). In: Proceedings of the eleventh annual holiday symposium, New Mexico State University, pp. 1–126 (1973)

  22. Pflaum, M.J., Posthuma, H., Tang, X.: The localized longitudinal index theorem for Lie groupoids and the van Est map. Adv. Math. 270, 223–262 (2015)

    Article  MathSciNet  Google Scholar 

  23. Segal, G.: Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. 34, 105–112 (1968)

    Article  MathSciNet  Google Scholar 

  24. Shulman, H., Tischler, D.: Leaf invariants for foliations and the Van Est isomorphism. J. Differ. Geom. 11(4), 535–546 (1976)

    Article  MathSciNet  Google Scholar 

  25. Świerczkowski, S.: Cohomology of group germs and Lie algebras. Pac. J. Math. 39, 471–482 (1971)

    Article  MathSciNet  Google Scholar 

  26. Tu, J.: La conjecture de Novikov pour les feuilletages hyperboliques. K-Theory 16(2), 129–184 (1999)

  27. van Est, W.T.: Group cohomology and Lie algebra cohomology in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15, 484–492, 493–504 (1953)

  28. van Est, W.T.: On the algebraic cohomology concepts in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17, 225–233, 286–294 (1955)

  29. W. T. van Est, Une application d’une méthode de Cartan-Leray, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17, 542–544 (1955)

  30. Weinstein, A., Xu, P.: Extensions of symplectic groupoids and quantization. J. Reine Angew. Math. 417, 159–189 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

E.M. was supported by an NSERC Discovery Grant. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance code 001. The authors would like to thank the hospitality of Fields Institute where some of this research was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Amelia Salazar.

Additional information

Communicated by Thomas Schick.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Theorem 4.4

Appendix A. Proof of Theorem 4.4

Taking \(Q=G\) in (25), we have \(p+1\) commuting G-actions on \(E_pG=B_pG\times _M G\); these commute with the principal action and descend to the actions on \(B_pG\). The projection \(\pi _p:E_pG\rightarrow M\) intertwines each of these actions with the trivial action on M; hence we obtain commuting G-actions on the vector bundles

$$\begin{aligned} \pi _p^*(V\otimes \wedge ^q A^*)=E_pG\times _M (V\otimes \wedge ^q A^*) \subseteq E_pG\times (V\otimes \wedge ^q A^*), \end{aligned}$$
(50)

using the trivial action on the \(V\otimes \wedge ^q A^*\) factor. The infinitesimal action gives covariant derivatives \(\nabla _\xi ^{(i)}\) on \(\mathsf {D}^{p,q}(G,V)=\Gamma (\pi _p^*(\wedge ^q A^*\otimes V))\); the derivatives for different i’s commute. They ‘lift’ the operators \(\nabla _\xi ^{(i)}\) on \(\mathsf {C}^p(G,V)=\Gamma (B_pG\times _M V)\) introduced earlier.

Lemma A.1

  1. (a)

    The maps \({\mathsf {j}}:\mathsf {C}^p(G,V)\rightarrow \mathsf {D}^{p,0}(G,V)\) intertwine \(\nabla _\xi ^{(i)}\) for \(i=0,\ldots ,p\).

  2. (b)

    The operators \(\nabla _\xi ^{(i)}\) on the double complex commute with the vertical differential \(\mathsf {d}\), and also with contractions \(\iota _\zeta ,\ \zeta \in \Gamma (A)\) and Lie derivatives \(\mathcal {L}_\zeta \).

  3. (c)

    The maps \(\mathsf {h}=(-1)^p h_{p-1}^*:\mathsf {D}^{p,q}(G,V)\rightarrow \mathsf {D}^{p-1,q}(G,V)\) intertwine \(\nabla _\xi ^{(i)}\) for \(i=0,\ldots ,p-1\), while

    $$\begin{aligned} \mathcal {L}_\xi \circ \mathsf {h}=\mathsf {h}\circ (\nabla _\xi ^{(p)}+\mathcal {L}_\xi ). \end{aligned}$$
    (51)

Proof

  1. (a)

    follows from the equivariance of the map \(\kappa _p\) with respect to the i-th action.

  2. (b)

    Since \(\iota _\zeta \) is equivariant for i-th action, it intertwines the operators \(\nabla _\xi ^{(i)}\). Next, since \(\kappa _p:E_pG\rightarrow B_pG\) is equivariant for the i-th action; the foliation \(\mathcal {F}\) of \(E_pG\) is preserved; i.e., the infinitesimal action of \(\Gamma (A)\) is by infinitesimal automorphisms of the Lie algebroid \(T_\mathcal {F}E_pG\). It follows that the action on \(\mathsf {D}^{p,\bullet }(G,V)\) preserves the differential \(\mathsf {d}_{CE}\) and hence also \(\mathsf {d}=(-1)^p\mathsf {d}_{CE}\). Finally, since \(\mathcal {L}_\zeta =[\mathsf {d}_{CE},\iota _\zeta ]\) it also intertwines the Lie derivatives (for the principal G-action); alternatively this follows directly because the i-th action commutes with the principal action.

  3. (c)

    The first part follows since the maps

    $$\begin{aligned} h_{p-1}:E_{p-1}G\rightarrow E_pG,\ (g_1,\ldots ,g_{p-1};g)\mapsto (g_1,\ldots ,g_{p-1},g;\mathsf {s}(g)) \end{aligned}$$

    (see (11)) are equivariant for the actions labeled by \(i=0,\ldots ,p-1\). For (51), we need to consider both the generating vector fields \(\xi ^{(p)}\) for the p-th G-action and the generators \(\xi _{E_pG}\in \mathfrak {X}(E_pG)\) of the principal action. In terms of \(E_pG=B_pG\times _M G\),

    $$\begin{aligned} \xi ^{(p)}=(\xi ^{L,p},-\xi ^R),\ \ \ \xi _{E_pG}=(0,\xi ^L),\ \ \end{aligned}$$

    where \(\xi ^{L,p}\) is the left-invariant vector field sitting on the last G-factor of \(B_pG\). Since \(\xi ^L\sim _{u\circ \mathsf {s}} \xi ^L-\xi ^R\) (where \(u:M\rightarrow G\) is the inclusion of units), we see that

    $$\begin{aligned} \xi _{E_{p-1}G}\sim _{h_{p-1}} \xi _{E_pG}+\xi ^{(p)},\end{aligned}$$

    which implies Eq. (51).

\(\square \)

We are now in position to give the proof of Theorem 4.4.

Proof of Theorem 4.4

On elements of \(\mathsf {C}^p(G,V)=\Gamma (B_pG\times _M V)\), we have that

$$\begin{aligned} {\text {VE}}_G=(-1)^p \mathsf {p}\circ (\mathsf {d}\mathsf {h})^p\circ {\mathsf {j}}. \end{aligned}$$

Using

$$\begin{aligned} {\mathsf {j}}&=\kappa _p^*:\mathsf {C}^p(G,V)\rightarrow \mathsf {D}^{p,0}(G,V),\\ \mathsf {d}\mathsf {h}&=-\mathsf {d}_{CE}\circ h_{i-1}^*:\mathsf {D}^{i,p-i}(G,V)\rightarrow \mathsf {D}^{i-1,p-i+1}(G,V),\\ \mathsf {p}&=u^*:\mathsf {D}^{0,p}(G,V)\rightarrow \mathsf {C}^p(A,V),\\ \end{aligned}$$

this means that \({\text {VE}}_G= u^*\circ \mathsf {d}_{CE}\circ h_0^*\circ \mathsf {d}_{CE} \circ \cdots \circ h_{p-1}^*\circ \kappa _p^*\). Given \(\xi _1,\ldots ,\xi _p\in \Gamma (A)\) and \(\sigma \in \Gamma (B_pG\times _M V)\), we want to compute

$$\begin{aligned} {\text {VE}}_G(\sigma )(\xi _1,\ldots ,\xi _p)= \iota _{\xi _p}\cdots \iota _{\xi _1} u^* \mathsf {d}_{CE}\, h_0^*\, \mathsf {d}_{CE}\, h_1^*\, \cdots \mathsf {d}_{CE}\, h_{p-1}^*\, \kappa _p^*\, \sigma . \end{aligned}$$

Our strategy is to move the variables \(\xi _p,\ldots ,\xi _1\) to the right, while retaining their ordering (keeping \(\xi _i\) to the left of \(\xi _j\) if \(i>j\)). The commutators of contractions \(\iota _\xi \) with \(\mathsf {d}_{CE}\) produces Lie derivatives \(\mathcal {L}_\xi =[\iota _\xi ,\mathsf {d}_{CE}]\). Using Lemma A.1 and \(\mathcal {L}_\xi \circ \kappa _p^*=0\), we find

$$\begin{aligned} \mathcal {L}_\xi \circ h_{i-1}^*\cdots \mathsf {d}_{CE} \circ h_{p-1}^*\circ \kappa _p^* =h_{i-1}^*\circ \cdots \mathsf {d}_{CE} \circ h_{p-1}^*\circ \kappa _p^* \circ \widehat{\nabla }_\xi ^{(i)} \end{aligned}$$

where we introduced the hat notation

$$\begin{aligned} \widehat{\nabla }_\xi ^{(i)}=\nabla _\xi ^{(i)}+\ldots +\nabla _\xi ^{(1)}, \end{aligned}$$

corresponding to the diagonal action for the actions labeled \(1,\ldots ,i\). (Note that the 0-th action is not included.) We therefore obtain

$$\begin{aligned} {\text {VE}}_G(\sigma )(\xi _1,\ldots ,\xi _p)&=u^*h_0^*\cdots h_{p-1}^*\kappa _p^* \sum _{s\in \mathfrak {S}_p}{\text {sign}}(s) \widehat{\nabla }_{\xi _p}^{(s(p))} \cdots \widehat{\nabla }_{\xi _1}^{(s(1))}\sigma \\&=\left( \sum _{s\in \mathfrak {S}_p}{\text {sign}}(s) \widehat{\nabla }_{\xi _p}^{(s(p))} \cdots \widehat{\nabla }_{\xi _1}^{(s(1))}\sigma \right) \bigg |_M; \end{aligned}$$

here the second equality follows since the composition \(\kappa _p\circ h_{p-1}\circ \cdots \circ h_0\circ u\) is just the inclusion \(M\rightarrow B_pG\). To complete the proof, we argue that

$$\begin{aligned} \sum _{s\in \mathfrak {S}_p}{\text {sign}}(s) \widehat{\nabla }_{\xi _p}^{(s(p))} \cdots \widehat{\nabla }_{\xi _1}^{(s(1))} \end{aligned}$$
(52)

is equal to a similar sum with all hats removed. Given \(s\in \mathfrak {S}_p\), let \(i=s^{-1}(p)\). Since

$$\begin{aligned} \widehat{\nabla }_{\xi _i}^{(p)}=\nabla _{\xi _i}^{(p)}+\widehat{\nabla }_{\xi _i}^{(p-1)} \end{aligned}$$

we see that the product

$$\begin{aligned} \widehat{\nabla }_{\xi _p}^{(s(p))} \cdots (\widehat{\nabla }_{\xi _i}^{(p)}-\nabla _{\xi _i}^{(p)}) \cdots \widehat{\nabla }_{\xi _1}^{(s(1))} \end{aligned}$$

coincides with the corresponding expression for the permutation \(s'\), given as the composition of s with the transposition of the indices \(p,p-1\). Since \(s,s'\) have opposite signs, it follows that (52) does not change when we remove the hats from all \(\widehat{\nabla }_{\xi _i}^{(s(i))}\) for which \(s(i)=p\).

Having done so, and assuming \(p>2\), consider for a given \(s\in \mathfrak {S}_p\) the indices ij for which \(s(i)=p,\ s(j)=p-1\). (If \(p=2\), we may simply put \(\widehat{\nabla }_\xi ^{(1)}={\nabla }_\xi ^{(1)}\), completing the proof.) An argument similar to the first step shows that the expression

$$\begin{aligned} \widehat{\nabla }_{\xi _p}^{(s(p))} \cdots \nabla _{\xi _i}^{(p)} \cdots (\widehat{\nabla }_{\xi _j}^{(p-1)}-\nabla _{\xi _i}^{(p-1)}) \cdots \widehat{\nabla }_{\xi _1}^{(s(1))} \end{aligned}$$
(53)

coincides with a similar expression for the composition of s with transposition of the indices \(p-1,p-2\). (We wrote (53) for the case that \(i>j\); of course, if \(i<j\) the \(\nabla _{\xi _i}^{(p)}\) would appear to the right of \(\widehat{\nabla }_{\xi _j}^{(p-1)}-\nabla _{\xi _j}^{(p-1)}\).) Since those permutations have opposite signs, it shows that we may also remove the hat from the factors \(\nabla _{\xi _j}^{(s(j)}\) with \(s(j)=p-1\). Removing all the hats in this manner, we have proved the Weinstein-Xu formula

$$\begin{aligned} {\text {VE}}_G(\sigma )(\xi _1,\ldots ,\xi _p)=\left( \sum _{s\in \mathfrak {S}_p}{\text {sign}}(s) {\nabla }_{\xi _p}^{(s(p))} \cdots {\nabla }_{\xi _1}^{(s(1))}\sigma \right) \bigg |_M. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meinrenken, E., Salazar, M.A. Van Est differentiation and integration. Math. Ann. 376, 1395–1428 (2020). https://doi.org/10.1007/s00208-019-01917-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01917-1

Navigation