Skip to main content
Log in

Systematic Characterization of Near-Index-Matched Optics Based Atmospheric Turbulence Simulator

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

In the present communication, a systematic characterization of atmospheric turbulence simulator (ATS) based on near-index-matched optics is reported. Characteristics of the propagating laser beam in actual turbulence can be realized in the laboratory by employing such types of turbulence simulators. Such simulators are necessarily required to evaluate the performance of an adaptive optics sensor and compensator modules in the laboratory. Various strengths of atmospheric turbulence can be generated by selecting the different speeds of rotation and the diameters of the beam-interacting area of ATS. A MATLAB-based high-speed video processing method is developed and used for estimating the various turbulence parameters such as angle-of-arrival fluctuations, Fried parameter, Hurst exponent, turbulence frequencies and the scintillation index from the generated turbulence. Also, the maximum transmitted wavefront error produced by this turbulence simulator is measured by an in-house developed Shack–Hartmann wavefront sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. M. Herbst, K. K. Santhakumari, M. Klettke, C. Arcidiacono, M. Bergomi, T. Bertram, J. Berwein, P. Bizenberger, F. Briegel, J. Farinato, and L. Marafatto, Commissioning multi-conjugate adaptive optics with LINC-NIRVANA on LBT. In Proc. SPIE 10703: adaptive optics systems VI (2018, July) p. 107030B. https://doi.org/10.1117/12.2313421.

  2. B. L. Ellerbroek, R. Q. Fugate, and J. M. Spinhirne, Current laser guide-star adaptive optics systems and concepts for the future. In Proc. SPIE 1780: lens and optical systems design (2018) p. 17802C. https://doi.org/10.1117/12.142884.

  3. A. Dixit, A. K. Mamgain, V. Porwal, and S. K. Mishra, Study of wavefront tilt variance with various telescope apertures in indoor convective turbulence. Defence Sci. J. 68(4) (2018) 394-400. https://doi.org/10.14429/dsj.68.11862.

    Article  Google Scholar 

  4. R. K. Tyson, Principles of adaptive optics, 4th edition, CRC Press (2015).

  5. S. Thomas, A simple turbulence simulator for adaptive optics. In Proc. SPIE 5490: advancements in adaptive optics (2004) pp. 766-774. https://doi.org/10.1117/12.549858.

  6. R. Rampy, D. Gavel, D. Dillon, and S. Thomas, New method of fabricating phase screens for simulated atmospheric turbulence. In Proc. SPIE 7736: adaptive optics systems II (2010) p. 77362Y. https://doi.org/10.1117/12.856517.

  7. E. Pinna, A. T. Puglisi, S. Esposito, A. Tozzi, and A. V. Goncharov, Simple implementation of phase screens for repeatable seeing generation. In Proc. SPIE 5490: advancements in adaptive optics (2004) pp. 830-837. https://doi.org/10.1117/12.551964.

  8. M. Otsubo, H. Takami, and M. Iye, Holographic atmospheric turbulence simulator for testing adaptive optics systems. Publ. Astronom. Soc. Pac. 109(739) (1997) 1057.

    Article  ADS  Google Scholar 

  9. A. Lylova, J. Sheldakova, and A. Kudryashov, Atmopheric turbulence modeling by means of deformable mirrors with the use of phase interpolation. In Proc. IEEE 7th international conference on advanced optoelectronics and lasers (CAOL) (2016) pp. 210-212. https://doi.org/10.1109/CAOL.2016.7851431.

  10. I. Toselli, O. Korotkova, X Xiao, and D. G. Voelz, SLM-based laboratory simulations of Kolmogorov and non-Kolmogorov anisotropic turbulence. Appl. Opt. 54(15) (2015) 4740-4744. https://doi.org/10.1364/AO.54.004740.

    Article  ADS  Google Scholar 

  11. C. Rickenstorff, J. A. Rodrigo, and T. Alieva, Programmable simulator for beam propagation in turbulent atmosphere. Opt. Express 24(9) (2016) 10000-10012. https://doi.org/10.1364/OE.24.010000.

    Article  ADS  Google Scholar 

  12. R. Sharma, J. S. Ivan, and C. S. Narayanamurthy, Comparative statistical analysis of phase profiles of a pseudo random phase plate with Kolmogorov phase screens. Optik 126(23) (2015) 4195-4201. https://doi.org/10.1016/j.ijleo.2015.07.208.

    Article  ADS  Google Scholar 

  13. R. Sharma and C. S. Narayanamurthy, Single and double passage interferometric analysis of Pseudo-Random-Phase-Plates. Opt. Commun. 345(2015) 37-46. https://doi.org/10.1016/j.optcom.2015.01.064.

    Article  ADS  Google Scholar 

  14. E. P. Magee and B. M. Welsh, Characterization of laboratory-generated turbulence by optical phase measurements. Opt. Eng. 33(11) (1994) 3810-3818. https://doi.org/10.1117/12.181180.

    Article  ADS  Google Scholar 

  15. J. S. Tharp and R.K. Tyson, Measurement of the optical path difference over an atmospheric turbulence phase plate. In Proc. SPIE 5490: advancements in adaptive optics (2004) pp. 805-810. https://doi.org/10.1117/12.550064.

  16. C. Hogge and R. Butts, Frequency spectra for the geometric representation of wavefront distortions due to atmospheric turbulence. IEEE Trans. Antennas Propag. 24(2) (1976) 144-154. https://doi.org/10.1109/TAP.1976.1141310.

    Article  ADS  MathSciNet  Google Scholar 

  17. J. M. Conan, G. Rousset, and P. Y. Madec, Wave-front temporal spectra in high-resolution imaging through turbulence. JOSA A 12(7) (1995) 1559-1570. https://doi.org/10.1364/JOSAA.12.001559.

    Article  ADS  Google Scholar 

  18. S. M. Ebstein, Nearly index-matched optics for aspherical, diffractive, and achromatic-phase diffractive elements. Opt. Lett. 21(18) (1996) 1454-1456. https://doi.org/10.1364/JOSAA.12.001559.

    Article  ADS  Google Scholar 

  19. S. M. Ebstein, Pseudo-random phase plates. In Proc. SPIE 4493: high-resolution wavefront control: methods, devices, and applications III (2002) pp. 150-156. https://doi.org/10.1117/12.454707.

  20. M. Carbillet and A. Riccardi, Numerical modeling of atmospherically perturbed phase screens: new solutions for classical fast Fourier transform and Zernike methods. Appl. Opt. 49(31) (2010) G47-G52. https://doi.org/10.1364/AO.49.000G47.

    Article  Google Scholar 

  21. J. D. Schmidt, Numerical simulation of optical wave propagation with examples in MATLAB. Bellingham, Washington, USA: SPIE (2010, July). https://doi.org/10.1117/3.866274.

  22. V. Porwal, A Dixit, A. K. Mamgain, S. K. Mishra, and A. K. Gupta, A systematic performance evaluation of indigenously developed Shack-Hartmann wavefront sensor. Indian J. Pure Appl. Phys. 54(7) (2016) 419-426. http://nopr.niscair.res.in/handle/123456789/34949.

  23. M. Bernhardt, J. W. Buckle, C. Dainty, F. C. Reavell, V. Ruiz-Cortes, M. Welch, and N. J. Wooder, Measurements of scintillation over a 17.55-km horizontal path. In Proc. SPIE 3866: optics in atmospheric propagation and adaptive systems III (1999) pp. 119-129. https://doi.org/10.1117/12.371316.

  24. A. Dixit, V. Porwal, S. K. Mishra, A. Kumar, and A. K. Gupta, Characterization of atmosphere-like turbulence for the performance evaluation of adaptive optics system. In Proc. international conference on optics and photonics, University of Calcutta, Kolkata, India (2015) p. 70. https://doi.org/10.13140/2.1.4493.6489.

  25. X. Liu, L. Liu, Y. Chen, and Y. Cai, Partially coherent vortex beam: from theory to experiment. Vortex Dynamics and Optical Vortices (2017) pp. 275-296. https://doi.org/10.5772/66323.

  26. S. K. Mishra, A. Dixit, V. Porwal, and D. Mohan, Design and testing of customized phase plate as atmospheric turbulence simulator. In Proc. XXXVII OSI symposium (Pond. Univ.) (2013) pp. 172-174. https://doi.org/10.13140/2.1.4106.5920.

  27. V. Porwal, A. Dixit, and S. K. Mishra, Evaluation of finitely conjugated afocal telescope using SH-WS for adaptive Optics. In Proc. ICOL 2014 (2014) p 17. https://doi.org/10.13140/RG.2.1.4011.7446/1.

Download references

Acknowledgements

The authors wish to acknowledge Mr. Benjamin Lionel, Director DRDO-IRDE, for permitting to publish this work. Authors also grateful to Dr. A. K. Gupta, Mr. Devendra Mohan, Mr. J. K. Bajpai and Dr. N. S. Vasan, DRDO-IRDE, India, for their constructive suggestions and technical inputs in the manuscript. A. Dixit is thankful to DRDO-IRDE, India, for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Awakash Dixit or Sanjay Kumar Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, A., Porwal, V., Kumar, A. et al. Systematic Characterization of Near-Index-Matched Optics Based Atmospheric Turbulence Simulator. MAPAN 35, 221–232 (2020). https://doi.org/10.1007/s12647-020-00370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-020-00370-9

Keywords

Navigation