Skip to main content
Log in

Accuracy Estimation of Propagation Velocity in Variable Path Ultrasonic Interferometer for Liquids

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

In this article, we describe the effects and the degree to which they cause error in the measurement of propagation velocity. Various effects include nonlinearity in path measurement, temperature stability and number of maxima or minima consideration. Double-distilled water was used as a sample to estimate various effects. Finally, it has been concluded that the variable frequency approach may be preferred for better accuracy. It has also been observed that the digital frequency selection is more precise than mechanical distance variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Eggers and T. Funck, Ultrasonic measurements with milliliter liquid samples in the 0.5–100 MHz range, Rev. Sci. Instrum., 44 (1973) 969–977.

    Article  ADS  Google Scholar 

  2. S. Rajagopalan, S. Sharma and P. Dubey, Measurement of ultrasonic velocity with improved accuracy in pulse echo setup, Rev. Sci. Instrum., 78 (2007) 085104.

    Article  ADS  Google Scholar 

  3. U. Kaatze, T. O. Hushcha and F. Eggers, Ultrasonic broadband spectrometry of liquids a research tool in pure and applied chemistry and chemical physics, J. Solut. Chem., 29 (2000) 299–368.

    Article  Google Scholar 

  4. S. Yadav, A. Zafer, A. Kumar, N. Sharma and D. Aswal, Role of national pressure and vacuum metrology in indian industrial growth and their global metrological equivalence, MAPAN, 33 (2018) 347–359.

    Article  Google Scholar 

  5. A. Kumar, V. N. Thakur, A. Zafer, N. Sharma, S. Yadav and D. Aswal, Contributions of national standards on the growth of barometric pressure and vacuum industries, MAPAN, 34 (2019) 13–17.

    Article  Google Scholar 

  6. I. Perepechko, Low-temperature properties of polymers, First edition Pergamon, London (1980).

    Google Scholar 

  7. A. Sarvazyan, Development of methods of precise ultrasonic measurements in small volumes of liquids, Ultrasonics, 20 (1982) 151–154.

    Article  Google Scholar 

  8. M. I. Aralaguppi, T. M. Aminabhavi, R. H. Balundgi and S. S. Joshi, Thermodynamic interactions in mixtures of bromoform with hydrocarbons, J. Phys. Chem., 95 (1991) 5299–5308.

    Article  Google Scholar 

  9. B. Marwein and S. Bhat, Thermodynamic study of molecular interactions in ternary liquid systems, Thermochim. Acta, 118 (1987) 277–285.

    Article  Google Scholar 

  10. M. K. Praharaj, A. Satapathy, P. Mishra and S. Mishra, Ultrasonic studies of ternary liquid mixtures of NN-dimethylformamide, nitrobenzene, and cyclohexane at different frequencies at 318 K, J. Theor. Appl. Phys., 7 (2013) 23.

    Article  ADS  Google Scholar 

  11. S. Fakruddin, M. Pushpalatha, C. Srinivasu and K. Narendra, Excess thermo-acoustical parameters in binary liquid mixture containing n-butanol at different temperatures, Karbala Int. J. Mod. Sci., 1, (2015) 97–100.

    Article  Google Scholar 

  12. S. F. Babavali, P. Shakira, C. Srinivasu and K. Narendra, Comparative study of theoretical ultrasonic velocities of binary liquid mixtures containing quinoline and mesitylene at temperatures T = (303.15, 308.15, 313.15 and 318.15) K, Karbala Int. J. Mod. Sci., 1 (2015) 172–177.

    Article  Google Scholar 

  13. R. Lagemann, D. McMillan Jr. and W. Woolf, Temperature variation of ultrasonic velocity in liquids, J. Chem. Phys., 17 (1949) 369–373.

    Article  ADS  Google Scholar 

  14. S. Parveen, D. Shukla, S. Singh, K. Singh, M. Gupta and J. Shukla, Ultrasonic velocity, density, viscosity and their excess parameters of the binary mixtures of tetrahydrofuran with methanol and o-cresol at varying temperatures, Appl. Acoust., 70 (2009) 507–513.

    Article  Google Scholar 

  15. R. Piccirelli and T. Litovitz, Ultrasonic shear and compressional relaxation in liquid glycerol, J. Acoust. Soc. Am., 29 (1957) 1009–1020.

    Article  ADS  Google Scholar 

  16. V. Mohammadi, M. Ghasemi-Varnamkhasti, R. Ebrahimi and M. Abbasvali, Ultrasonic techniques for the milk production industry, Measurement, 58 (2014) 93–102.

    Article  Google Scholar 

  17. T. M. Aminabhavi, S. K. Raikar and R. H. Balundgi, Volumetric, acoustic, optical, and viscometric properties of binary mixtures of 2-methoxyethanol with aliphatic alcohols (C1-C8), Ind. Eng. Chem. Res., 32 (1993) 931–936.

    Article  Google Scholar 

  18. T. M. Aminabhavi and S. K. Raikar, Thermodynamic interactions in binary mixtures of 2-methoxyethanol with alkyl and aryl esters at 298.15, 303.15 and 308.15 K, Collect. Czechoslov. Chem. Commun., 58 (1993) 1761–1776.

    Article  Google Scholar 

  19. D. N. Sinha and G. Kaduchak, Noninvasive determination of sound speed and attenuation in liquids, Exp. Methods Phys. Sci., 39 (2001) 307–333.

    Article  ADS  Google Scholar 

  20. S. Sharma, U. K. Mishra, S. Yadav and P. K. Dubey, 2019, Improved ultrasonic interferometer technique for propagation velocity and attenuation measurement in liquids, Rev. Sci. Instrum., 90, (2019) 045107.

    Article  ADS  Google Scholar 

  21. W. Marczak, Water as a standard in the measurements of speed of sound in liquids, J. Acoust. Soc. Am., 102 (1997) 2776–2779.

    Article  ADS  Google Scholar 

  22. V. N. Bindal and A. K. Kansal, An Ultrasonic interferometer, (1975) Indian patent No. 136940.

  23. For oscillator, Microchip Technology Inc, DS31002A, (1997) 2, 1–20.

  24. For, Analog Devices, LTC1799 datasheet, resistor set SOT-23 oscillator.

  25. N. Bobroff, Recent advances in displacement measuring interferometry, Meas. Sci. Technol., 4 (1993) 907.

    Article  ADS  Google Scholar 

  26. P. Dubey and S. Singh, High resolution vertical movement system for transducer and target separation in primary ultrasonic power measurement setup, Measurement, 76 (2015) 201–208.

    Article  Google Scholar 

  27. V. R. Meyer, Measurement uncertainty, J. Chromatogr. A, 1158 (2007) 15–24.

    Article  Google Scholar 

  28. P. K. Dubey and S. Sharma, Improved ultrasonic interferometer excitation and detection device for velocity and attenuation, Measurement (2017) Indian patent filed No. 201711036499.

Download references

Acknowledgements

The authors would like to thank the Director, CSIR-National physical laboratory, for providing the necessary facilities to carry out above work. The authors (Sahil Sharma) also thank to University Grant Commission (UGC) New Delhi, India, for providing the Research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Mishra, U.K., Saini, A.K. et al. Accuracy Estimation of Propagation Velocity in Variable Path Ultrasonic Interferometer for Liquids. MAPAN 35, 19–24 (2020). https://doi.org/10.1007/s12647-019-00331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-019-00331-x

Keywords

Navigation