Skip to main content
Log in

Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plants being sessile entities are often subjected to varied environmental stresses. They have developed an alternative defense mechanism that involves a vast variety of secondary metabolites to serve as tools to cope up with various stress conditions. The exposure of plant cells to abiotic and biotic stresses initiate multilevel reaction cascades that consequently leads to production and accumulation of various secondary metabolites. Various enzymatic and non-enzymatic molecules comprising the antioxidative defense system comes into play to counteract the undesirable effect of ecological stresses. Energy required as fuel in biosynthesis, transport and storage which comprises the costs for the formation of various transcription factors. When plant experiences stress in combination they express various transcription factors that might help the plant to make flexible signaling cascades to increase plant resistance against one of the stress. Based on this limelight, the present review aims to wrap the influence of different abiotic and biotic factors including salt, drought, heavy metals, UV light, herbivory and pathogenesis on secondary metabolites production and their roles in stress tolerance mechanism in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abou QS, Luo H, Laluk K, Mickelbart VM, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by AIM1 transcription factor. Plant J 58:1–13

    Article  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  CAS  Google Scholar 

  • Ali MB, Singh N, Shohael AM, Hahn EJ (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171(1):147–154

    Article  CAS  Google Scholar 

  • Amist N, Singh NB, Yadav K (2014) Interactive effects of rice residue and water stress on growth and metabolism of wheat seedlings. J Stress Physiol Biochem 10(3):232–245

    Google Scholar 

  • Amist N, Singh NB, Yadav K (2015) Effects of rice residues and water deficit on growth and metabolism of Triticum aestivum L. Allelopathy J 36(1):87–102

    Google Scholar 

  • Amist N, Singh NB, Yadav K (2017) Responses of enzymes involved in proline biosynthesis and degradation in wheat seedlings under stress. Allelopathy J 42(2):195–206

    Article  Google Scholar 

  • Ashraf MA, Iqbal M, Hussain I, Rasheed R (2015) Physiological and biochemical approaches for salinity tolerance. In: Wani SH, Hossain MA (eds) Managing salt tolerance in plants: molecular and genomic perspectives, CRC Press, pp 79–113

  • Atkinson NJ, Jain R, Urwin PE (2015) The response of plants to simultaneous biotic and abiotic stress. Combined stresses in plants. Springer, Cham, pp 181–201

    Google Scholar 

  • Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azhar N, Hussain B, Ashraf MY, Abbasi KY (2011) Water stress mediated changes in growth, physiology and secondary metabolites of desi ajwain (Trachyspermum ammi L.). Pak J Bot 43(1):15–19

    CAS  Google Scholar 

  • Bano C, Singh NB, Sunaina S (2016) Differential responses of pea seedlings to salicylic acid under UV-B stress. Trop Plant Res 3(3):586–591

    Article  Google Scholar 

  • Bano C, Amist N, Singh NB, Sunaina S (2017) UV-B radiation escalates allelopathic effect of benzoic acid on Solanum lycopersicum L. Sci Hort 220:199–205

    Article  CAS  Google Scholar 

  • Bartwal A, Mall R, Lohani P, Guru SK, Arora S (2013) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32(1):216–232

    Article  CAS  Google Scholar 

  • Bayram O, Braus GH (2012) Coordination of secondarymetabolismand development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36(1):24

    Article  CAS  Google Scholar 

  • Ben Abdallah S, Aung B, Amyot L, Lalin I, Lachâal M, Karray-Bouraoui N, Hannoufa A (2016) Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant 38(3):72. https://doi.org/10.1007/s11738-016-2096-8

    Article  CAS  Google Scholar 

  • Berberich T, Sagor GHM, Kusano T (2015) Polyamines in plant stress response. Polyamines. Springer, Tokyo, pp 155–168

    Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Na Rev Microbiol 11:21–32

    Article  CAS  Google Scholar 

  • Brzezinska E, Kozłowska M, Stachowiak J (2006) Response of three conifer species to enhanced UV-B radiation; consequences for photosynthesis. Pol J Environ Stud 15(4):531–536

    CAS  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308. https://doi.org/10.1038/nbt.1506

    Article  CAS  PubMed  Google Scholar 

  • Buxbaum E (2015) Transport of solutes across membranes. Fundamentals of protein structure and function. Springer, Cham, pp 421–468

    Chapter  Google Scholar 

  • Cao Y, Song F, Goodman RM, Zheng Z (2006) Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J Plant Physiol 163:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Cheevarungnapakul K, Khaksar G, Patwira P, Boonjing P, Sirikantaramas S (2019) Identification and functional characterization of genes involved in the biosynthesis of caffeoylquinic acids in sunflower (Helianthus annuus L.). Front Plant Sci 10:968

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Lai Z, Shi J, Xiao Y, Che Z, Xu X (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WH, Liu WJ, Wang Y, Song XP, Chen GY (2015) A new naphtoquinone and other antibacterial constituents from the roots of Xanthium sibiricum. Nat Prod Res 29:739–744

    Article  CAS  PubMed  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Chiapusio G, Gonzalez L, Reigosa-Roger MJ, Pellissier F (2016) Changes in polyamines, proline and protein contents in radish seedlings could serve as indicators of allelopathic stress induced by 2-benzoxazolinone and p-hydroxybenzoic acid. J Allelochem Interact 2(1):39–49

    Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specifcity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Chomel M et al (2016) Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J Ecol 104(6):1527–1541

    Article  Google Scholar 

  • Chunthaburee S, Sanitchon J, Pattanagul W, Theerakulpisut P (2015) Effects of salt stress after late booting stage on yield and antioxidant capacity in pigmented rice grains and alleviation of the salt-induced yield reduction by exogenous spermidine. Plant Prod Sci 18(1):32–42. https://doi.org/10.1626/pps.18.32

    Article  CAS  Google Scholar 

  • DeLuca V, Balsevich J, Tyler RT, Eilert U, Panchuk BD, Kurz WGW (1986) Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J Plant Physiol 125(1–2):147–156

    Article  CAS  Google Scholar 

  • Do PT, Drechsel O, Heyer AG, Hincha DK, Zuther E (2014) Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. Front Plant Sci 5:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Eid SY, El-Readi MZ, Fatani SH, Eldin EEMN, Wink M (2015) Natural products modulate the multifactorial multidrug resistance of cancer. Pharmacol Pharm 6(03):146

    Article  CAS  Google Scholar 

  • Falhof J, Pedersen JT, Fuglsang AT, Palmgren M (2016) Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol Plant 9(3):323–337

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Summers CB, Mueller AJ (1994) Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa hopper. J Chem Ecol 20(3):639–650

    Article  CAS  PubMed  Google Scholar 

  • Gao SQ, Chen M, Xu ZS, Zhao CP, Li L, Xu HJ, Tang YM, Zhao X, Ma YZ (2011) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75(6):537–553

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Yang B, Zhang D, Chen M, Tian J (2016) Enhanced metabolic process to indole alkaloids in Clematis terniflora DC. after exposure to high level of UV-B irradiation followed by the dark. BMC Plant Biol 16(1):231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gengmao Z, Yu H, Xing S, Shihui L, Quanmei S, Changhai W (2015) Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind Crops Prod 64:175–181. https://doi.org/10.1016/j.indcrop.2014.10.058

    Article  CAS  Google Scholar 

  • Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plants Res 5(31):6697–6703

    CAS  Google Scholar 

  • Guern J (1987) Regulation from within: the hormone dilemma. Ann Bot 75–102

  • Gupta P, Sharma R, Sharma MK, Sharma MP, Satpute GK, Garg S et al (2016) Signaling cross talk between biotic and abiotic stress responses in soybean. Abiotic and biotic stresses in soybean production. Academic Press, USA, pp 27–52

    Chapter  Google Scholar 

  • Hatano E, Saveer AM, Borrero-Echeverry F, Strauch M, Zakir A et al (2015) A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signaling pathways. BMC Biol 13:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernandez-Cumplido J, Giusti MM, Zhou Y, Kyryczenko-Roth V, Chen YH, Rodriguez-Saona C (2018) Testing the ‘plant domestication-reduced defense’ hypothesis in blueberries: the role of herbivore identity. Arthropod Plant Interact 12(4):483–493

    Article  Google Scholar 

  • Hodaei M, Rahimmalek M, Arzani A, Talebi M (2018) The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind Crops Prod 120:295–304

    Article  CAS  Google Scholar 

  • Hong SY, Roze LV, Linz JE (2013) Oxidative stress–related transcription factors in the regulation of secondary metabolism. Toxins 5:683–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Chen G, Yin W, Cui B, Yu X, Lu Y, Hu Z (2017) Silencing of SlHB2 improves drought, salt stress tolerance, and induces stress-related gene expression in tomato. J Plant Growth Regul 36(3):578–589

    Article  CAS  Google Scholar 

  • Iqbal K, Azhar FM, Khan IA (2011) Variability for drought tolerance in cotton (Gossypium hirsutum) and its genetic basis. Int J Agric Biol 13(1):61–66

    Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Panneerselvam R (2007) Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. C R Biol 330:674–683. https://doi.org/10.1016/j.crvi.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  • Jeschke V, Gershenzon J, Vassão DG (2015) Metabolism of glucosinolates and their hydrolysis products in insect herbivores. The formation, structure and activity of phytochemicals. Springer, Cham, pp 163–194

    Chapter  Google Scholar 

  • Kanno H, Hasegawa M, Kodama O (2012) Accumulation of salicylic acid, jasmonic acid and phytoalexins in rice, Oryza sativa, infested by the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool 47(1):27–34

    Article  CAS  Google Scholar 

  • Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11(8):982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43(2–3):155–176

    Article  CAS  PubMed  Google Scholar 

  • Keunen E, Schellingen K, Vangronsveld J, Cuypers A (2016) Ethylene and metal stress: small molecule, big impact. Front Plant Sci 7:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Khatun S, Babar Ali M, Hahn EJ, Paek KY (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64:279–285

    Article  CAS  Google Scholar 

  • Kim N, Estrada O, Chavez B, Stewart C, D’Auria J (2016) Tropane and granatane alkaloid biosynthesis: a systematic analysis. Molecules 21(11):1510

    Article  PubMed Central  CAS  Google Scholar 

  • Kısa D, Elmastas M, Öztürk L, Kayır Ö (2016) Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl Biol Chem 59:813–820

    Article  CAS  Google Scholar 

  • Lajayer BA, Ghorbanpour M, Nikabadi S (2017) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecot Environ Saf 145:377–390

    Article  CAS  Google Scholar 

  • Langi P, Kiokias S, Varzakas T, Proestos C (2018) Carotenoids: from plants to food and feed industries. Microbial carotenoids. Humana Press, New York, pp 57–71

    Chapter  Google Scholar 

  • Larson R (2018) Reaction mechanisms in environmental organic chemistry. Routledge, UK

    Book  Google Scholar 

  • Leng X, Jia H, Sun X, Shangguan L, Mu Q, Wang B, Fang J (2015) Comparative transcriptome analysis of grapevine in response to copper stress. Sci Rep 5:17749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindemose RS, O’Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Wang X, Wang D, Zou Z, Liang Z (2011) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crops Prod 33:146–151

    Article  CAS  Google Scholar 

  • Liu C, Wu Y, Wang X (2013) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235:1157–1169

    Article  CAS  Google Scholar 

  • Liu C, Wang X, Shulaev V, Dixon RA (2016) A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nat Plants 2(12):1–7

    Article  CAS  Google Scholar 

  • Lubaina AS, Murugan K (2013) Biochemical characterization of oxidative burst during interaction between sesame (Sesamum indicum L.) in response to alternaria sesame. In: Prospects in bioscience: addressing the issues, pp 243–250

  • Lv H, Li J, Wu Y, Garyali S, Wang Y (2016) Transporter and its engineering for secondary metabolites. Appl Microbiol Biotechnol 100(14):6119–6130

    Article  CAS  PubMed  Google Scholar 

  • Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA (2016) Regulation and role of fungal secondary metabolites. Ann Rev Genet 50(371):392

    Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876

    PubMed  PubMed Central  Google Scholar 

  • Marchive C, Léon C, Kappel C, Coutos-Thévenot P, Corio-Costet MF, Delrot S, Lauvergeat V (2013) Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS ONE 8(1):e54185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehrotra S, Mishra S, Srivastava V (2018) Hairy root cultures for monoterpene indole alkaloid pathway: investigation and biotechnological production. Hairy roots. Springer, Singapore, pp 95–121

    Chapter  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The Botrytis susceptible1 gene encodes an R2R3 MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mithöfer A, Maffei ME (2016) General mechanisms of plant defense and plant toxins. In: Gopalakrishnakone P, Carlini C, Ligabue-Braun R (eds) Plant toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6728-7_21-1

    Chapter  Google Scholar 

  • Mithöfer A, Wilhelm B (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  CAS  Google Scholar 

  • Mittra B, Ghosh P, Henry SL, Mishra J, Das TK, Ghosh S, Babu CR, Mohanty P (2004) Novel mode of resistance to Fusarium infection by a mild dose pre-exposure of cadmium in wheat. Plant Physiol Biochem 42(10):781–787

    Article  CAS  PubMed  Google Scholar 

  • Miyamae Y, Kurisu M, Han J, Isoda H, Shigemori H (2011) Structure–activity relationship of caffeoylquinic acids on the accelerating activity on ATP production. Chem Pharma Bull 59(4):502–507

    Article  CAS  Google Scholar 

  • Morales A, Zurita-Silva A, Maldonado J, Silva H (2017) Transcriptional responses of Chilean quinoa (Chenopodium quinoa Willd.) under water deficit conditions uncovers ABA-independent expression patterns. Front Plant Sci 8:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Murch SJ, Haq K, Rupasinghe HQ, Saxena PK (2003) Nickel contamination affects growth and secondary metabolite composition of St. John's wort (Hypericum perforatum L.). Environ Exp Bot 49(3):251–257

    Article  CAS  Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Nazari M, Zarinkamar F, Soltani BM (2017) Physiological, biochemical and molecular responses of Mentha aquatica L. to manganese. Plant Physiol Biochem 120:202–212

    Article  CAS  PubMed  Google Scholar 

  • Otani M, Shitan N, Sakai K, Martinoia E, Sato F, Yazaki K (2005) Characterization of vacuolar transport of the endogenous akaloid berberine in Coptis japonica. Plant Physiol 138:1939–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK (2015) Secondary metabolites of plants and their role: overview. Curr Trends Biotechnol Pharm 9(3):293–304

    Google Scholar 

  • Pandey N, Pandey-Rai S (2014) Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L. Plant Cell Tissue Organ Cult 116:371–385

    Article  CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Parmar RD (2016) In vitro response of promising sugarcane varieties for salinity tolerance through callus culture, Doctoral dissertation, Genetics and Plant Breeding Dept, NMCA, NAU, Navsari

  • Radušienė J, Karpavičienė B, Stanius Ž (2012) Effect of external and Internal factors on secondary metabolites accumulation in St. John’s worth. Bot Lith. https://doi.org/10.2478/v10279-012-0012-8

    Article  Google Scholar 

  • Rai R, Meena RP, Smita SS, Shukla A, Rai SK, Pandey-Rai S (2011a) UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L.—an antimalarial plant. J Photochem Photobiol B Biol 105(3):216–225

    Article  CAS  Google Scholar 

  • Rai R, Pandey S, Rai SP (2011b) Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicol 20:1900–1913

    Article  CAS  Google Scholar 

  • Rajabbeigi E, Eichholz I, Beesk N, Ulrichs C, Kroh LW, Rohn S, Huyskens-Keil S (2013) Interaction of drought stress and UV-B radiation-impact on biomass production and flavonoid metabolism in lettuce (Lactuca sativa L.). J Appl Bot Food Qual 86(1):190–197

    CAS  Google Scholar 

  • Ramani S, Jayabaskaran C (2008) Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. J Mol Signal 3(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao SS, El-Habbak MH, Havens WM, Singh A, Zheng D, Vaughn L, Haudenshield JS, Hartman GL, Korban SS, Ghabrial SA (2014) Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol Plant Pathol 15:145–160

    Article  CAS  PubMed  Google Scholar 

  • Rao DE, Divya K, Prathyusha IVSN, Krishna CR, Chaitanya KV (2017) Insect-resistant plants. In: Current developments in biotechnology and bioengineering. Elsevier, pp 47–74

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses on Arabidopsis. Plant Physiol 161:1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rejeb IB, Victoria P, Brigitte MM (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3(4):458–475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reusche M, Thole K, Janz D, Truskina J, Rindfleisch S, Drübert C, Polle A, Lipka V, Teichmann T (2012) Verticillium infection triggers Vascular-related NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell 24:3823–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roshchina VV, Roshchina VD (2012) The excretory function of higher plants. Springer Science & Business Media, USA

    Google Scholar 

  • Roytrakul S, Verpoorte R (2007) Role of vacuolar transporter proteins in plant secondary metabolism: Catharanthus roseus cell culture. Phytochem Rev 6(2–3):383–396

    Article  CAS  Google Scholar 

  • Said-Al Ahl H, Omer E (2011) Medicinal and aromatic plants production under salt stress. A review. Herba Polonica 57(2):72–87

    Google Scholar 

  • Salehi-lisar SY, Motafakkerazad R, Hossain MM, Rahman IMM (2012) Water stress in plants: causes, effects and responses. In: Water stress. InTech

  • Sankari M, Hridya H, Sneha P, Doss CGP, Christopher JG, Mathew J, Zayed H, Ramamoorthy S (2019) Implication of salt stress induces changes in pigment production, antioxidant enzyme activity, and qRT-PCR expression of genes involved in the biosynthetic pathway of Bixa orellana L. Funct Integr Genomic 19(4):565–574

    Article  CAS  Google Scholar 

  • Saydee VJ (2015) An evaluation of the nematicidal potential of five botanicals in the management of meloidogyne Spp on tomato (Solanum Lycopersicum), Doctoral dissertation, University of Cape Coast

  • Schlesinger D, Rikanati RD, Volis S, Faigenboim A, Vendramin V, Cattonaro F, Hooper M, Oren E, Taylor M, Sitrit Y, Inbar M (2019) Alkaloid chemodiversity in Mandragora spp. is associated with loss-of-functionality of MoH6H, a hyoscyamine 6β-hydroxylase gene. Plant Sci 283:301–310

    Article  CAS  PubMed  Google Scholar 

  • Schluttenhofer C, Pattanaik S, Patra B, Yuan L (2014) Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling. BMC Genomics 15(1):502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt DD, Voelckel C, Hartl M, Schmidt S, Baldwin IT (2005) Specificity in ecological interactions. Attack from the same lepidopteran herbivore results in species-specific transcriptional responses in two solanaceous host plants. Plant Physiol 138(3):1763–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452

    Article  CAS  PubMed Central  Google Scholar 

  • Shin DJ, Min JH, Van Nguyen T, Kim YM, Kim CS (2019) Loss of Arabidopsis Halotolerance 2-like (AHL), a 3′-phosphoadenosine-5′-phosphate phosphatase, suppresses insensitive response of Arabidopsis thaliana ring zinc finger 1 (atrzf1) mutant to abiotic stress. Plant Mol Biol 99(4–5):363–377

    Article  CAS  PubMed  Google Scholar 

  • Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, Handford M, Stange C (2018) Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. J Experi Bot 69(16):4113–4126

    Article  CAS  Google Scholar 

  • Singla P, Garg N (2017) Plant flavonoids: key players in signaling, establishment, and regulation of rhizobial and mycorrhizal endosymbioses. Mycorrhiza-function, diversity, state of the art. Springer, Cham, pp 133–176

    Chapter  Google Scholar 

  • Smith CM (2005) Plant resistance to arthropods: molecular and conventional approaches. Springer Science & Business Media, USA

    Book  Google Scholar 

  • Stevenson PC, Nicolson SW, Wright GA (2017) Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol 31(1):65–75

    Article  Google Scholar 

  • Stinnett SM, Espeso EA, Cobeno L, Araujo-Bazan L, Calvo AM (2007) Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol Microbiol 63:242–255

    Article  CAS  PubMed  Google Scholar 

  • Strauss AS, Peters S, Boland W, Burse A (2013) ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. Elife 2:01096

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Secondary metabolites and plants defence. Plant Physiol 4:316–344

    Google Scholar 

  • Takshak S, Agrawal SB (2019) Defense potential of secondary metabolites in medicinal plants under UV-B stress. J Photochem Photobiol B Biol 193:51–88

    Article  CAS  Google Scholar 

  • Tari I, Kiss G, Deer AK, Csiszar J, Erdei L, Galle A et al (2010) Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biol Plant 54:677–683

    Article  CAS  Google Scholar 

  • Thieme KG, Gerke J, Sasse C, Valerius O, Thieme S, Karimi R et al (2018) Velvet domain protein VosA represses the zinc cluster transcription factor SclB regulatory network for Aspergillus nidulans asexual development, oxidative stress response and secondary metabolism. PLoS Genet 14(7):1007511

    Article  CAS  Google Scholar 

  • Thomas JE, Bandara M, Driedger D, Lee EL (2011) Fenugreek in western Canada. Am J Plant Sci Biotech 5(32):44

    Google Scholar 

  • Thomson JD, Draguleasa MA, Tan MG (2015) Flowers with caffeinated nectar receives more pollination. Arthropod Plant Interact 9:1–7

    Article  Google Scholar 

  • Tiedeken E-J, Stout JC, Egan P, Stevenson PC, Wright GA (2014) Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins. J Exp Biol 217:1620–1635

    Article  PubMed  PubMed Central  Google Scholar 

  • Tirillini B, Ricci A, Pintore G, Chessa M, Sighinolfi S (2006) Induction of hypericins in Hypericum perforatum in response to chromium. Fitoterapia 77(3):164–170

    Article  CAS  PubMed  Google Scholar 

  • Tran LSP, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT (2009) Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genom Med 281(647):664

    Google Scholar 

  • Tůmová L, Tůma J (2011) The effect of UV light on isoflavonoid production in Genista tinctoria culture in vitro. Acta Physiol Plant 33(2):635–640

    Article  CAS  Google Scholar 

  • Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Coraggio I, Genga A (2006) The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol 69:26–42

    Article  CAS  Google Scholar 

  • Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 2(4):105–113. https://doi.org/10.1016/j.jarmap.2015.09.002

    Article  Google Scholar 

  • Wang DH, Du F, Liu HY, Liang ZS (2006) Drought stress increases iridoid glycosides biosynthesis in the roots of Scrophularia ningpoensis seedlings. J Med Plants Res 1020(4):2691–2699

    Google Scholar 

  • Wang Q, Eneji AE, Kong X, Wang K, Dong H (2015) Salt stress effects on secondary metabolites of cotton in relation to gene expression responsible for aphid development. PLoS ONE 10(6):0129541

    Google Scholar 

  • Wang F, Zhu H, Kong W, Peng R, Liu Q, Yao Q (2016) The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis. Planta 244:59–73. https://doi.org/10.1007/s00425-016-2489-3

    Article  CAS  PubMed  Google Scholar 

  • Winde I, Wittstock U (2011) Insect herbivore counteradaptations to the plant glucosinolate–myrosinase system. Phytochemistry 72:1566–1575

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2003) Phytochemistry 64:3

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2011) Annual plant reviews, biochemistry of plant secondary metabolism. Wiley, New Jersey

    Google Scholar 

  • Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23(5):841–851

    Article  Google Scholar 

  • Xiao J, Cheng H, Li X, Xiao J, Xu C, Wang S (2013) Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plant Physiol 163:1868–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie ZM, Zou HF, Lei G, Wei W, Zhou QY, Niu CF, Liao Y, Tian AG, Ma B, Zhang WK, Zhang JS, Chen SY (2009) Soybean Trihelix transcription factors GmGT- 2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS ONE 4:e6898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180:911–921

    Article  PubMed  Google Scholar 

  • Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5:649–654. https://doi.org/10.4161/psb.5.6.11398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RS, Mahatma MK, Thirumalaisamy PP, Meena HN, Bhaduri D, Arora S, Panwar J (2017) Arbuscular mycorrhizal fungi (AMF) for sustainable soil and plant health in salt-affected soils. Bioremediation of salt affected soils: an Indian perspective. Springer, Cham, pp 133–156

    Chapter  Google Scholar 

  • Yan F, Bengtsson M, Makranczy G, Löfqvist J (2003) Roles of α-farnesene in the behaviors of codling moth females. Zeitschrift für Naturforschung C 58(1–2):113–118

    Article  CAS  Google Scholar 

  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23(4):762

    Article  PubMed Central  CAS  Google Scholar 

  • Yuan Y, Liu Y, Wu C, Chen S, Wang Z, Yang Z, Huang L (2012) Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots. PLoS ONE 7:42946. https://doi.org/10.1371/journal.pone.0042946

    Article  CAS  Google Scholar 

  • Zandalinas SI, Sales C, Beltrán J, Gómez-Cadenas A, Arbona V (2017) Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Front Plant Sci 7:1954

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang LQ, Wei K, Cheng H, Wang LY, Zhang CC (2016) Accumulation of catechins and expression of catechin synthetic genes in Camellia sinensis at different developmental stages. Bot Stud 57(1):1–8

    Article  CAS  Google Scholar 

  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University Grant Commission (UGC), New Delhi, India and University of Allahabad, India for providing financial assistance to Shubhra Khare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. B. Singh or Ajey Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khare, S., Singh, N.B., Singh, A. et al. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 63, 203–216 (2020). https://doi.org/10.1007/s12374-020-09245-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09245-7

Keywords

Navigation