Skip to main content

Advertisement

Log in

Plant Lipoxygenases and Their Role in Plant Physiology

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Several enzymes play a key role in plant growth and development. Among these, lipoxygenases family of enzymes are important. Lipoxygenases are a ubiquitous family of non-heme iron enzymes widely distributed in plants, initiate hydroperoxidation of polyunsaturated fatty acids containing cis, cis-1,4-pentadiene moieties, and produce phytooxylipins. Oxylipins including green leaf volatiles and hormone jasmonic acid play a significant role in physiological processes, seed germination, fruit ripening, and senescence. Detailed studies have shown that LOX and its products accumulate transiently upon developmental or environmental stimuli. LOXs play a key role in defense responses against biotic and abiotic environmental stresses such as fungi, bacteria, virus, nematodes, birds, insects, and rodents. As a result, these enzymes are the natural topics of study when scientists investigate plant response to stresses. In this review, we have concisely focused on the analysis of new information concerning plant LOXs and their role on the physiology of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad SS, Tahir I (2018) Putrescine and jasmonates outplay conventional growth regulators in improving postharvest performance of Iris germanica L. cut scapes. Proc Natl Acad Sci India 88:391–402

    CAS  Google Scholar 

  • Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    CAS  PubMed  Google Scholar 

  • Arbona V, Argamasilla R, Gómez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Phys 167:1342–1350

    CAS  Google Scholar 

  • Bae KS, Rahimi S, Kim YJ, Devi BSR, Khorolragchaa A, Sukweenadhi J, Silva J, Myagmarjav D, Yang DC (2016) Molecular characterization of lipoxygenase genes and their expression analysis against biotic and abiotic stresses in Panax ginseng. Eur J Plant Pathol 145:331–343

    CAS  Google Scholar 

  • Bhardwaj PK, Kaur J, Sobti RC, Ahuja PS, Kumar S (2011) Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid. Gene 483:49–53

    CAS  PubMed  Google Scholar 

  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    CAS  PubMed  Google Scholar 

  • Brash AR (2009) Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry 70:1522–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruinsma M, Van Broekhoven S, Poelman EH, Posthumus MA, Müller MJ, Van Loon JJ, Dicke M (2010) Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects. Oecologia 162:393–404

    PubMed  Google Scholar 

  • Burow GB, Gardner HW, Keller NP (2000) A peanut seed lipoxygenase responsive to Aspergillus colonization. Plant Mol Biol 42:689–701

    CAS  PubMed  Google Scholar 

  • Cerna H, Černý M, Habánová H, Šafářová D, Abushamsiya K, Navrátil M, Brzobohatý BJ (2017) Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV). J of Proteo 153:78–88

    CAS  Google Scholar 

  • Chauvin A, Caldelari D, Wolfender JL, Farmer EE (2013) Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. New Phytol 197:566–575

    CAS  PubMed  Google Scholar 

  • Christensen SA, Nemchenko A, Borrego E, Murray I, Sobhy IS, Bosak L, DeBlasio S, Erb M, Robert CA, Vaughn KA, Herrfurth C, Tumlinson J, Feussner I, Jackson D, Turlings TC, Engelberth J, Nansen C, Meeley R, Kolomiets MV (2013) The maize lipoxygenase, Zm LOX 10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. Plant J 74:59–73

    CAS  PubMed  Google Scholar 

  • Christensen SA, Huffaker A, Kaplan F, Sims J, Ziemann S, Doehlemann G, Ji L, Schmitz RJ, Kolomiets MV, Alborn HT, Mori N, Jander G, Ni X, Sartor RC, Byers S, Abdo Z, Schmelz EA (2015) Maize death acids, 9-lipoxygenase–derived cyclopente (a) nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Proc Natl Acad Sci 112:11407–11412

    CAS  PubMed  Google Scholar 

  • Clemente A, Olias R, Olias JM (2000) Purification and characterization of broad bean lipoxygenase isoenzymes. J Agric Food Chem 48:1070–1075

    CAS  PubMed  Google Scholar 

  • Contreras C, Schwab W, Mayershofer M, González-Agüero M, Defilippi BG (2017) Volatile compound and gene expression analyses reveal temporal and spatial production of LOX-derived volatiles in Pepino (Solanum muricatum Aiton) fruit and LOX specificity. J Agric Food Chem 65:6049–6057

    CAS  PubMed  Google Scholar 

  • Crozier A, Kamiya Y, Bishop G, Yokota T (2000) Biosynthesis of hormones and elicitor molecules. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 850–929

    Google Scholar 

  • Davoine C, Falletti O, Douki T, Iacazio G, Ennar N, Montillet JL, Triantaphylidès C (2006) Adducts of oxylipin electrophiles to glutathione reflect a 13 specificity of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiol 140:1484–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Ángel-Coronel OA, León-García E, Vela-Gutiérrez G, Rojas-Reyes JO, Gómez-Lim MÁ, García HS (2018) Lipoxygenase activity associated to fruit ripening and senescence in chayote (Sechium edule Jacq. Sw. cv. “virens levis”). J Food Biochem 42:e12438

    Google Scholar 

  • Deshpande AB, Chidley HG, Oak PS, Pujari KH, Giri AP, Gupta VS (2017) Isolation and characterization of 9-lipoxygenase and epoxide hydrolase 2 genes: insight into lactone biosynthesis in mango fruit (Mangifera indica L.). Phytochemistry 138:65–75

    CAS  PubMed  Google Scholar 

  • Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Fronti in Plant Sci 4:397

    Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    CAS  PubMed  Google Scholar 

  • Gao X, Starr J, Göbel C, Engelberth J, Feussner I, Tumlinson J, Kolomiets M (2008a) Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol Plant Microbe Interact 21:98–109

    CAS  PubMed  Google Scholar 

  • Gao X, Stumpe M, Feussner I, Kolomiets M (2008b) A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection. Planta 227:491–503

    CAS  PubMed  Google Scholar 

  • Gao H, Zhang ZK, Chai HK, Cheng N, Yang Y, Wang DN, Cao W (2016) Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Posthar Biol Technol 118:103–110

    CAS  Google Scholar 

  • Gomez-Lobato ME, Civello PM, Martínez GA (2012) Expression of a lipoxygenase encoding gene (BoLOX1) during postharvest senescence of broccoli. Postharvest Biol Technol 64:146–153

    CAS  Google Scholar 

  • Greco M, Chiappetta A, Bruno L, Bitonti MB (2011) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bota 63:695–709

    Google Scholar 

  • Han M, Zhang T, Zhao C, Zhi J (2011) Regulation of the expression of lipoxygenase genes in Prunus persica fruit ripening. Acta Physiol Plant 33:1345–1352

    CAS  Google Scholar 

  • Han C, Yin X, He D, Yang P (2013) Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PLoS ONE 8:e56947

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Meng K, Han Y, Ban Q, Wang B, Suo J, Rao J (2015) The persimmon 9-lipoxygenase gene DkLOX3 plays positive roles in both promoting senescence and enhancing tolerance to abiotic stress. Front Plant Sci 6:1073

    PubMed  PubMed Central  Google Scholar 

  • Hou Y, Ban Q, Meng K, He Y, Han S, Jin M, Rao J (2018) Overexpression of persimmon 9-lipoxygenase DkLOX3 confers resistance to Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis. Plant Growth Regul 84:179–189

    CAS  Google Scholar 

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    CAS  PubMed  Google Scholar 

  • Hu T, Hu Z, Zeng H, Qv X, Chen G (2015) Tomato lipoxygenase D involved in the biosynthesis of jasmonic acid and tolerance to abiotic and biotic stress in tomato. Plant Biotechnol Rep 9:37–45

    Google Scholar 

  • Huang J, Cai M, Long Q, Liu L, Lin Q, Jiang L, Chen S, Wan J (2014) OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgenic Res 23:643–655

    CAS  PubMed  Google Scholar 

  • Hughes RK, West SI, Hornostaj AR, Lawson DM, Fairhurst SA, Sanchez RO, Hough P, Robinson BH, Casey R (2001) Probing a novel potato lipoxygenase with dual positional specificity reveals primary determinants of substrate binding and requirements for a surface hydrophobic loop and has implications for the role of lipoxygenases in tubers. Biochem J 353:345–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang IS, Hwang BK (2010) The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152:948–967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iguarán EC, Ocampo GT, Alzate OT (2018) Identification of volatile compound markers during the ripening and senescence of lulo (Solanum quitoense Lam.). J Food Sci Technol 55:437–442

    Google Scholar 

  • Isakeit T, Gao X, Kolomiets M (2007) Increased resistance of a maize mutant lacking the 9-Lipoxygenase gene, zmlox3, to root rot caused by Exserohilum pedicellatum. J Phytopathol 155:758–760

    CAS  Google Scholar 

  • Jensen AB, Poca E, Rigaud M, Freyssinet G, Pages M (1997) Molecular characterization of L2 lipoxygenase from maize embryos. Plant Mol Biol 33:605–614

    CAS  PubMed  Google Scholar 

  • Joo YC, Oh DK (2012) Lipoxygenases: potential starting biocatalysts for the synthesis of signaling compounds. Biotechnol Adv 30:1524–1532

    CAS  PubMed  Google Scholar 

  • Kaur KD, Jha A, Sabikhi L, Singh AK (2014) Significance of coarse cereals in health and nutrition: a review. J Food Sci Technol 51:1429–1441

    CAS  PubMed  Google Scholar 

  • Kolomiets MV, Hannapel DJ, Chen H, Tymeson M, Gladon RJ (2001) Lipoxygenase is involved in the control of potato tuber development. Plant Cell 13:613–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotapati KV, Palaka BK, Anangi R, Kedam T, Ampasala DR (2015) Cloning and characterization of lipoxygenase gene from germinating seedlings of green gram (Vigna radiata L.). Indian J Plant Physiol 20:345–352

    Google Scholar 

  • Kotapati KV, Palaka BK, Kandukuri A, Pamuru RR, Lebaka VR, Ampasala DR (2016) Molecular cloning, characterization and three-dimensional structure prediction of Lipoxygenase from Finger millet [Eleusine coracana (L.) Gaertn.] germinating seedlings. J Plant Biochem Biotechnol 25:155–167

    CAS  Google Scholar 

  • Kotapati KV, Palaka BK, Ampasala DR (2017) Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. Crop J 5:240–250

    Google Scholar 

  • Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E, Remesy C (2006) Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur J Agron 25:170–176

    CAS  Google Scholar 

  • Lemeza OV, Zubo YO, Kusnetsov VV (2010) Regulation of lipoxygenase gene expression in potato mini-tubers by phytohormones. Russ J Plant Physiol 57:715–719

    CAS  Google Scholar 

  • León-García E, Vela-Gutiérrez G, Del Ángel-Coronel OA, Torres-Palacios C, De La Cruz-Medina J, Gómez-Lim MA, García HS (2017) Increased postharvest life of TomLox B silenced mutants of tomato (Solanum lycopersicum) var. TA234. Plant Foods Hum Nutr 72:380–387

    PubMed  Google Scholar 

  • Leverentz MK, Wagstaff C, Rogers HJ, Stead AD, Chanasut U, Silkowski H, Griffiths G (2002) Characterization of a novel lipoxygenase-independent senescence mechanism in Alstroemeria peruviana floral tissue. Plant Physiol 130:273–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhao PJ, Ma CL, Zeng Y (2012a) A chitosan induced 9-lipoxygenase in Adelostemma gracillimum seedlings. Int J Mol Sci 13:540–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S-T, Zhang M, Fu C-H, Xie S, Zhang Y, Yu LJ (2012b) Molecular cloning and characterization of two 9-lipoxygenase genes from Taxus chinensis. Plant Mol Biol Rep 30:1283–1290

    CAS  Google Scholar 

  • Lian QL, Xin HB, Zhong XH, Zhang ZY, Li XX, Yuan X, Yi MF (2011) Cloning, characterization and expression analysis of a 9-lipoxygenase gene in Gladiolus hybridus. Sci Horticult 130:468–475

    CAS  Google Scholar 

  • Lim CW, Han SW, Hwang IS, Kim DS, Hwang BK, Lee SC (2015) The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant Cell Physiol 56:930–942

    CAS  PubMed  Google Scholar 

  • Ling J, Li R, Nwafor CC, Cheng J, Li M, Xu Q, Chen M (2018) Development of iFOX-hunting as a functional genomic tool and demonstration of its use to identify early senescence-related genes in the polyploid Brassica napus. Plant Biotechnol J 16:591–602

    CAS  PubMed  Google Scholar 

  • Liu S, Han B (2010) Differential expression pattern of an acidic 9/13-lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant. BMC Plant Biol 10:228

    PubMed  PubMed Central  Google Scholar 

  • Liu JY, Zhang C, Shao Q, Tang YF, Cao SX, Guo XO, Qi HY (2016) Effects of abiotic stress and hormones on the expressions of five 13-CmLOXs and enzyme activity in oriental melon (Cucumis melo var. makuwa Makino). J Integr Agric 15:326–338

    CAS  Google Scholar 

  • LópezMA VJ, Kulasekaran S, Vellosillo T, Martínez M, Irigoyen M, Cascón T, Bannenberg G, Hamberg M, Castresana C (2011) Antagonistic role of 9-lipoxygenase-derived oxylipins and ethylene in the control of oxidative stress, lipid peroxidation and plant defence. Plant J 67:447–458

    Google Scholar 

  • Mariutto M, Duby F, Adam A, Bureau C, Fauconnier ML, Ongena M, Thonart P, Dommes J (2011) The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol 11:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    CAS  PubMed  Google Scholar 

  • Mazur R, Trzcinska-Danielewicz J, Kozlowski P, Kowalewska Ł, Rumak I, Shiell BJ, Mostowska A, Michalski WP, Garstka M (2018) Dark-chilling and subsequent photo-activation modulate expression and induce reversible association of chloroplast lipoxygenase with thylakoid membrane in runner bean (Phaseolus coccineus L.). Plant Physiol and Biochem 122:102–112

    CAS  Google Scholar 

  • Meng K, Hou Y, Han Y, Ban Q, He Y, Suo J, Rao J (2017) Exploring the functions of 9-lipoxygenase (DkLOX3) in ultrastructural changes and hormonal stress response during persimmon fruit storage. Int J Mol Sci 18:589

    PubMed Central  Google Scholar 

  • Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Lauriere C, Chevalier A (2013) An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 11:e1001513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nemchenko A, Kunze S, Feussner I, Kolomiets M (2006) Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments. J Exp Bot 57:3767–3779

    CAS  PubMed  Google Scholar 

  • Oenel A, Fekete A, Krischke M, Faul SC, Gresser G, Havaux M, Mueller MJ, Berger S (2017) Enzymatic and non-enzymatic mechanisms contribute to lipid oxidation during seed aging. Plant Cell Physiol 58:925–933

    CAS  PubMed  Google Scholar 

  • Ozalvo R, Cabrera J, Escobar C, Christensen SA, Borrego EJ, Kolomiets MV, Castresana C, Iberkleid I, Brown Horowitz S (2014) Two closely related members of A rabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection. Mol Plant Pathol 15:319–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla MN, Hernandez ML, Sanz C, Martinez-Rivas JM (2012) Molecular cloning, functional characterization and transcriptional regulation of a 9-lipoxygenase gene from olive. Phytochemistry 74:58–68

    CAS  PubMed  Google Scholar 

  • Padilla MN, Hernandez ML, Sanz C, Martinez-Rivas JM (2014) Stress-dependent regulation of 13-lipoxygenases and 13-hydroperoxide lyase in olive fruit mesocarp. Phytochemistry 102:80–88

    CAS  PubMed  Google Scholar 

  • Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C (2008) Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59:177–186

    CAS  PubMed  Google Scholar 

  • Palmieri-Thiers C, de Caraffa VB-B, Lorenzi V, Gambotti C, Giannettini J, Berti L, Maury J (2009) Biochemical and molecular aspects of olive lipoxygenase. In: Berti L, Maury J (eds) Transworld research network. Academic Press, New York, pp 23–44

    Google Scholar 

  • Park YS, Kunze S, Ni X, Feussner I, Kolomiets MV (2010) Comparative molecular and biochemical characterization of segmentally duplicated 9-lipoxygenase genes ZmLOX4 and ZmLOX5 of maize. Planta 231:1425–1437

    CAS  PubMed  Google Scholar 

  • Perla V, Jayanty SS, Holm DG, Davidson RD (2014) Relationship between tuber storage proteins and tuber powdery scab resistance in potato. Am J Potato Res 91:233–245

    CAS  Google Scholar 

  • Podolyan A, White J, Jordan B, Winefield C (2010) Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Funct Plant Biol 37:767–784

    CAS  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porta H, Rueda-Benitez P, Campos F, Colmenero-Flores JM, Colorado JM, Carmona MJ, Covarrubias AA, Rocha-Sosa M (1999) Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions. Plant Cell Physiol 40:850–858

    CAS  PubMed  Google Scholar 

  • Porta H, Figueroa-Balderas RE, Rocha-Sosa M (2008) Wounding and pathogen infection induce a chloroplast-targeted lipoxygenase in the common bean (Phaseolus vulgaris L.). Planta 227:363–373

    CAS  PubMed  Google Scholar 

  • Prasad A, Sedlářová M, Kale RS, Pospíšil P (2017) Lipoxygenase in singlet oxygen generation as a response to wounding: in vivo imaging in Arabidopsis thaliana. Sci Rep 7:9831

    PubMed  PubMed Central  Google Scholar 

  • Rahimi S, Devi BSR, Khorolragchaa A, Kim YJ, Kim JH, Jung SK, Yang DC (2014) Effect of salicylic acid and yeast extract on the accumulation of jasmonic acid and sesquiterpenoids in Panax ginseng adventitious roots. Russ J Plant Physiol 61:811–817

    CAS  Google Scholar 

  • Rahimi S, Kim Y-J, Devi BSR, Oh JY, Kim S-Y, Kwon W-S, Yang DC (2016) Sodium nitroprusside enhances the elicitation power of methyl jasmonate for ginsenoside production in Panax ginseng roots. Res Chem Intermed 42:2937–2951

    CAS  Google Scholar 

  • Roach T, Colville L, Beckett RP, Minibayeva FV, Havaux M, Kranner IJP (2015) A proposed interplay between peroxidase, amine oxidase and lipoxygenase in the wounding-induced oxidative burst in Pisum sativum seedlings. Phytochemistry 112:130–138

    CAS  PubMed  Google Scholar 

  • Santino A, Iannacone R, Hughes R, Casey R, Mita G (2005) Cloning and characterisation of an almond 9-lipoxygenase expressed early during seed development. Plant Sci 168:699–706

    CAS  Google Scholar 

  • Sanz LC, Perez AG, Rios JJ, Olias JM (1993) Positional specificity of ketodienes from linoleic acid aerobically formed by lipoxygenase isozymes from kidney bean and pea. J Agric Food Chem 41:696–699

    CAS  Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJ, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J-H, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao JL, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller D, Contreras C, Vogt J, Dunemann F, Defilippi BG, Beaudry R, Schwab W (2015) A dual positional specific lipoxygenase functions in the generation of flavor compounds during climacteric ripening of apple. Horticult Res 25(2):15003

    Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:e230

    PubMed  PubMed Central  Google Scholar 

  • Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol 152:1940–1950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma VK, Monostori T, Göbel C, Hänsch R, Bittner F, Wasternack C, Feussner I, Mendel RR, Hause B, Schulze J (2006) Transgenic barley plants overexpressing a 13-lipoxygenase to modify oxylipin signature. Phytochemistry 67:264–276

    CAS  PubMed  Google Scholar 

  • Shen J, Tieman D, Jones JB, Taylor MG, Schmelz E, Huffaker A, Bies D, Chen K, Klee HJ (2014) A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. J Exp Bot 65:419–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase: structure and function. Annu Rev Plant Biol 42:145–188

    CAS  Google Scholar 

  • Skorzynska-Polit E, Krupa Z (2003) The activity of lipoxygenase in Arabidopsis thaliana (L.) Heynh—a preliminary study. Cell Mol Biol Lett 8:279–284

    CAS  PubMed  Google Scholar 

  • Song H, Wang P, Li C, Han S, Lopez-Baltazar J, Zhang X, Wang XJ Sr (2016) Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection. Sci Rep 6:35245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Springer A, Kang C, Rustgi S, Von Wettstein D, Reinbothe C, Pollmann S, Reinbothe S (2016) Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX). Proc Natl Acad Sci 113:3383–3388

    CAS  PubMed  Google Scholar 

  • Sujatha B, Devi P, Maheswari U (2012) Antifungal potential of papaya lipoxygenase metabolites against Phytophthora palmivora. J Pure Applied Microbiol 6:433–438

    CAS  Google Scholar 

  • Turner GW, Grimes HD, Lange BM (2011) Soybean vegetative lipoxygenases are not vacuolar storage proteins. Function Plant Biol 38:778–787

    CAS  Google Scholar 

  • Vardar F, Meral ÜNAL (2011) Immunolocalization of lipoxygenase in the anther wall cells of Lathyrus undulatus Boiss. during programmed cell death. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39:71–78

    CAS  Google Scholar 

  • Vellosillo T, Martínez M, López MA, Vicente J, Cascón T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19:831–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vellosillo T, Aguilera V, Marcos R, Bartsch M, Vicente J, Cascón T, Hamberg M, Castresana C (2013) Defense activated by 9-lipoxygenase-derived oxylipins requires specific mitochondrial proteins. Plant Physiol 161:617–627

    CAS  PubMed  Google Scholar 

  • Vicente J, Cascón T, Vicedo B, García-Agustín P, Hamberg M, Castresana C (2012) Role of 9-lipoxygenase and α-dioxygenase oxylipin pathways as modulators of local and systemic defense. Mol Plant 5:914–928

    CAS  PubMed  Google Scholar 

  • Vogt J, Schiller D, Ulrich D, Schwab W, Dunemann F (2013) Identification of lipoxygenase (LOX) genes putatively involved in fruit flavour formation in apple (Malus× domestica). Tree Genet Genome 9:1493–1511

    Google Scholar 

  • Wang R, Shen W, Liu L, Jiang L, Liu Y, Su N, Wan J (2008) A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Mol Biol 66:401–414

    CAS  PubMed  Google Scholar 

  • Wasternack C, Feussner I (2018) The oxylipin pathways: biochemistry and function. Annu Rev Plant Biol 69:363–386

    CAS  PubMed  Google Scholar 

  • Weber H, Chetelat A, Caldelari D, Farmer EE (1999) Divinyl ether fatty acid synthesis in late blight-diseased potato leaves. Plant Cell 11:485–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weichert H, Kolbe A, Kraus A, Wasternack C, Feussner I (2002) Metabolic profiling of oxylipins in germinating cucumber seedlings–lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes. Planta 215:612–619

    CAS  PubMed  Google Scholar 

  • Woldemariam MG, Ahern K, Jander G, Tzin V (2018) A role for 9-lipoxygenases in maize defense against insect herbivory. Plant Signal Behav 13:4709–4723

    Google Scholar 

  • Wu L, Wang S, Tian L, Wu L, Li M, Zhang J, Li P, Zhang W, Chen Y (2018) Comparative proteomic analysis of the maize responses to early leaf senescence induced by preventing pollination. J Proteomics 177:75–87

    CAS  PubMed  Google Scholar 

  • Xi Y, Cheng D, Zeng X, Cao J, Jiang W (2016) Evidences for chlorogenic acid—a major endogenous polyphenol involved in regulation of ripening and senescence of apple fruit. PLoS ONE 11:e0146940

    PubMed  PubMed Central  Google Scholar 

  • Xu H, Wei Y, Zhu Y, Lian L, Xie H, Cai Q, Chen Q, Lin Z, Wang Z, Xie H (2015) Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity. Plant Biotechnol J 13:526–539

    CAS  PubMed  Google Scholar 

  • Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li C (2013) Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 9:e1003964

    PubMed  PubMed Central  Google Scholar 

  • Yang XY, Jiang WJ, Yu HJ (2012) The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). Int J Mol Sci 13:2481–2500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi H, Yi M-A, Choe HT (2005) Changes in lipoxygenase properties and activity related to postgerminative growth and senescence in oat (Avena sativa L cv. Victory 1). J Plant Biol 48:429–439

    CAS  Google Scholar 

  • Zhang B, Shen J-Y, Wei W-W, Xi W-P, Xu C-J, Ferguson I, Chen K (2010) Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening. J Agric Food Chem 58:6157–6165

    CAS  PubMed  Google Scholar 

  • Zhao Y-Y, Qian C-L, Chen J-C, Peng Y, Mao LC (2010) Responses of phospholipase D and lipoxygenase to mechanical wounding in postharvest cucumber fruits. J Zhejiang Univ Sci B 11:443–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Jin Y, Liu J, Tang Y, Cao S, Qi H (2014) The phylogeny and expression profiles of the lipoxygenase (LOX) family genes in the melon (Cucumis melo L.) genome. Sci Horticult 170:94–102

    CAS  Google Scholar 

  • Zhu J, Wang X, Guo L, Xu Q, Zhao S, Li F, Yan X, Liu S, Wei C (2018) Characterization and alternative splicing profiles of lipoxygenase gene family in tea plant (Camellia sinensis). Plant Cell Physiol 59:1765–1781

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kotapati Kasi Viswanath or Ampasala Dinakara Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanath, K.K., Varakumar, P., Pamuru, R.R. et al. Plant Lipoxygenases and Their Role in Plant Physiology. J. Plant Biol. 63, 83–95 (2020). https://doi.org/10.1007/s12374-020-09241-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09241-x

Keywords

Navigation