Skip to main content
Log in

Distribution of positive solutions to Schrödinger systems with linear and nonlinear couplings

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the existence, nonexistence and uniqueness of positive solutions for the following two Schrödinger systems with linear and nonlinear couplings which arise from Bose–Einstein condensates:

$$\begin{aligned} \left\{ \begin{array}{l} -\triangle u+\mu u^{3}=\lambda u+\kappa v+\beta uv^{2} \ \ \text {in} \ \ \Omega ,\\ -\triangle v+\mu v^{3}=\lambda v+\kappa u+\beta vu^{2} \ \ \text {in} \ \ \Omega ,\\ u,v>0 \ \text {in} \ \Omega , \ u=v=0 \ \qquad \,\,\,\, \text {on} \ \partial \Omega , \end{array}\right. \end{aligned}$$

and

$$\begin{aligned} \left\{ \begin{array}{l} -\triangle u+\lambda u+\kappa v=\mu u^{3}+\beta uv^{2} \ \ \text {in} \ \ \Omega ,\\ -\triangle v+\lambda v+\kappa u=\mu v^{3}+\beta vu^{2} \ \ \text {in} \ \ \Omega ,\\ u,v>0 \ \text {in} \ \Omega , \ u=v=0 \ \qquad \quad \text {on} \ \partial \Omega \end{array}\right. \end{aligned}$$

on the range of \(\lambda \) and the coupling constants \(\kappa \), \(\beta \), where \(\Omega \) is a bounded smooth domain in \({\mathbb {R}}^{N}\), \(N\ge 1\), \(\lambda , \mu >0\). We obtain some interesting positive solutions distribution theorems in the \(\kappa \lambda \)-plane for fixed \(\beta \) in different ranges. Especially we get some uniqueness results via synchronized solution techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Colorado, E.: Bound and groound states of coupled nonlinear Schrödinger equations. C.R. Math. Acad. Sci. Paris 342, 453–458 (2006)

    Article  MathSciNet  Google Scholar 

  2. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  3. Clapp, M., Faya, J.: Multiple solutions to a weakly coupled purely critical elliptic system in bounded domains. Discrete Contin. Dyn. Syst. 39, 3265–3289 (2019)

    Article  MathSciNet  Google Scholar 

  4. Dancer, E.N., Wei, J.C., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 953–969 (2010)

    Article  MathSciNet  Google Scholar 

  5. Dancer, E.N., Wang, K.L., Zhang, Z.T.: Uniform Hölder estimate for singularly perturbed parabolic systems of Bose–Einstein condensates and competing species. J. Differ. Equ. 251(10), 2737–2769 (2011)

    Article  Google Scholar 

  6. Dancer, E.N., Wang, K.L., Zhang, Z.T.: The limit equation for the Gross–Pitaevskii equations and S. Terracini’s conjecture. J. Funct. Anal. 262(3), 1087–1131 (2012)

    Article  MathSciNet  Google Scholar 

  7. Dancer, E.N., Wang, K.L., Zhang, Z.T.: Addendum to The limit equation for the Gross–Pitaevskii equations and S. Terracini’s conjecture. J. Funct. Anal. 262(3), 1087–1131 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dancer, E.N., Wang, K.L., Zhang, Z.T.: Addendum to The limit equation for the Gross–Pitaevskii equations and S. Terracini’s conjecture. J. Funct. Anal. 264(4), 1125–1129 (2013)

    Article  MathSciNet  Google Scholar 

  9. Gilberg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    Book  Google Scholar 

  10. Ikoma, N.: Uniqueness of positive solutons for a nonlinear elliptic sysem. Nonlinear Differ. Equ. Appl. 16, 555–567 (2009)

    Article  Google Scholar 

  11. Lin, T.C., Wei, J.C.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229, 538–569 (2006)

    Article  Google Scholar 

  12. Li, K., Zhang, Z.T.: Existence of solutions for a Schrödinger system with linear and nonlinear couplings. J. Math. Phys. 57, 081504 (2016)

    Article  MathSciNet  Google Scholar 

  13. Lions, P.L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24, 441–467 (1982)

    Article  MathSciNet  Google Scholar 

  14. Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229, 743–767 (2006)

    Article  Google Scholar 

  15. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267–302 (2010)

    Article  Google Scholar 

  16. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrodinger systems on bounded domains. Nonlinearity 32, 1044–1072 (2019)

    Article  MathSciNet  Google Scholar 

  17. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations. Commun. Math. Phys. 271, 199–221 (2007)

    Article  Google Scholar 

  18. Srikanth, P.N.: Uniqueness of solutions of nonlinear Dirichlet problems. Differ. Integral Equ. 6, 663–670 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Tian, R.S., Zhang, Z.T.: Existence and bifurcation of solutions for a double coupled system of Schrödinger equations. Sci. China Math. 58(8), 1607–1620 (2015)

    Article  MathSciNet  Google Scholar 

  20. Terracini, S., Verzini, G.: Multipulse phases in K-mixtures of Bose–Einstein condensates. Arch. Ration. Mech. Anal. 194, 717–741 (2009)

    Article  MathSciNet  Google Scholar 

  21. Wang, Z.Q., Willem, M.: Partial symmetry of vector solutions for elliptic systems. J. Anal. Math. 122, 69–85 (2014)

    Article  MathSciNet  Google Scholar 

  22. Wei, G.M.: Existence and concentration of ground states of coupled nonlinear Schrödinger equations. J. Math. Anal. Appl. 332, 846–862 (2007)

    Article  MathSciNet  Google Scholar 

  23. Wei, J.C., Wei, Yao: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 11(3), 1003–1011 (2012)

    Article  MathSciNet  Google Scholar 

  24. Zhang, Z.T., Luo, H.J.: Symmetry and asymptotic behavior of ground state solutions for Schrödinger systems with linear interaction. Commun. Pure Appl. Anal. 17(3), 787–806 (2018)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Z.T., Wang, W.: Structure of positive solutions to a Schrödinger systeem. J. Fixed Point Theory Appl. 19, 877–887 (2017)

    Article  MathSciNet  Google Scholar 

  26. Zhang, Z.T.: Variational, Topological, and Partial Order Methods with their Applications. Springer, Heidelberg (2013)

    Book  Google Scholar 

Download references

Acknowledgements

This paper was written during Xinqiu Zhang’s visit at Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, she thanks the hospitality of the Academy very much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhitao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China (11771428,11926335, 11871302).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, Z. Distribution of positive solutions to Schrödinger systems with linear and nonlinear couplings. J. Fixed Point Theory Appl. 22, 33 (2020). https://doi.org/10.1007/s11784-020-0767-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-020-0767-y

Keywords

Mathematics Subject Classification

Navigation