Skip to main content
Log in

Influence of Magnetization on the Spin Pumping Efficiency in a Ferromagnet–Normal Metal Bilayer Structure

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The problem of spin current generation and transformation into electric signals in thin-film ferromagnet/nonmagnetic metal bilayer structures is investigated. This direction is of considerable scientific interest and promising for applications in spintronics. An LSMO/Pt structure consisting of an epitaxial film of ferromagnetic manganite La2/3Sr1/3O3 grown on a single-crystal NdGaO3 substrate and coated with a platinum film has been studied experimentally. The spin current was generated by the spin pumping method upon the excitation of a ferromagnetic resonance in the ferromagnetic layer and was detected by the electric voltage USP arising in the nonmagnetic metal layer due to the inverse spin Hall effect. Owing to its relatively low Curie temperature (~350 K), using LSMO allowed the influence of ferromagnetic-layer magnetization on the spin current generation to be studied in detail in the temperature range 100–350 K. In this case, the influence of the shape of the ferromagnetic resonance line, which is the convolution of homogeneous (Lorentzian) spin packets and inhomogeneous Gaussian broadening (Voigt model), was consistently taken into account. As a result of our analysis of all the parameters defining USP, we have obtained the temperature dependence of the mixed spin conductance, which has turned out to be approximately proportional to the ferromagnet magnetization squared. This result is compared with existing theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Sinova, S. O. Valenzuela, J. Wunderlich, et al., Rev. Mod. Phys. 87, 1213 (2015).

    Article  ADS  Google Scholar 

  2. A. V. Chumak, V. I. Vasyuchka, A. A. Serga, et al., Nat. Phys. 11, 453 (2015).

    Article  Google Scholar 

  3. A. Brataas, Y. Tserkovnyak, G. E. W. Bauer, et al., Phys. Rev. B 66, 060404 (2002).

    Article  ADS  Google Scholar 

  4. Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. B 66, 224403 (2002).

    Article  ADS  Google Scholar 

  5. Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, et al., Rev. Mod. Phys. 77, 1375 (2005).

    Article  ADS  Google Scholar 

  6. H. L. Wang, C. H. Du, Y. Pu, et al., Phys. Rev. Lett. 112, 197201 (2014).

    Article  ADS  Google Scholar 

  7. S. Emori, U. S. Alaan, M. T. Gray, et al., Phys. Rev. B 94, 224423 (2016).

    Article  ADS  Google Scholar 

  8. E. Saitoh, M. Ueda, H. Miyajima, et al., Appl. Phys. Lett. 88, 182509 (2006).

    Article  ADS  Google Scholar 

  9. H. Y. Inoue, K. Harii, K. Ando, et al., J. Appl. Phys. 102, 083915 (2007).

    Article  ADS  Google Scholar 

  10. O. Mosendz, V. Vlaminck, J. E. Pearson, et al., Phys. Rev. B 82, 214403 (2010).

    Article  ADS  Google Scholar 

  11. A. Azevedo, L. H. Vilela-Leão, R. L. Rodríguez-Suárez, et al., Phys. Rev. B 83, 144402 (2011).

    Article  ADS  Google Scholar 

  12. F. D. Czeschka, L. Dreher, M. S. Brandt, et al., Phys. Rev. Lett. 107, 046601 (2011).

    Article  ADS  Google Scholar 

  13. Y. Kajiwara, S. Takahashi, J. Ohe, et al., Nature (London, U.K.) 464, 262 (2010).

    Article  ADS  Google Scholar 

  14. S. M. Rezende, R. L. Rodríguez-Suárez, and A. Azevedo, Phys. Rev. B 88, 014404 (2013).

    Article  ADS  Google Scholar 

  15. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  16. A.-M. Haghiri-Gosnet and J.-P. Renard, J. Phys. D: Appl. Phys. 36, R127 (2003).

    Article  Google Scholar 

  17. M. Wahler, N. Homonnay, T. Richter, et al., Sci. Rep. 6, 28727 (2016).

    Article  ADS  Google Scholar 

  18. V. A. Atsarkin, I. V. Borisenko, V. V. Demidov, et al., J. Phys. D: Appl. Phys. 51, 245002 (2018).

    Article  ADS  Google Scholar 

  19. V. Garcia, M. Bibes, A. Barthelemy, et al., Phys. Rev. B 69, 052403 (2004).

    Article  ADS  Google Scholar 

  20. M. Obstbaum, M. Hartinger, H. G. Bauer, et al., Phys. Rev. B 89, 060407 (2014).

    Article  ADS  Google Scholar 

  21. H. Boschker, M. Mathews, E. P. Houwman, et al., Phys. Rev. B 79, 214425 (2009).

    Article  ADS  Google Scholar 

  22. V. V. Demidov, I. V. Borisenko, A. A. Klimov, et al., J. Exp. Theor. Phys. 112, 825 (2011).

    Article  ADS  Google Scholar 

  23. I. V. Borisenko, M. A. Karpov, and G. A. Ovsyannikov, Tech. Phys. Lett. 39, 1027 (2013).

    Article  ADS  Google Scholar 

  24. V. A. Atsarkin, B. V. Sorokin, I. V. Borisenko, et al., J. Phys. D: Appl. Phys. 49, 125003 (2016).

    Article  Google Scholar 

  25. Q. Qin, S. He, W. Song, et al., Appl. Phys. Lett. 110, 112401 (2017).

    Article  ADS  Google Scholar 

  26. A. M. Portis, Phys. Rev. 91, 1070 (1953).

    Article  ADS  Google Scholar 

  27. C. P. Poole, Electron Spin Resonance: Comprehensive Treatise on Experimental Techniques (Wiley, New York, London, Sydney, 1967; Moscow, Mir, 1970), Chap. 12.

  28. V. A. Atsarkin, V. V. Demidov, T. A. Shaikhulov, et al., Magn. Res. Sol. 21, 19302 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank F.S. Dzheparov and G.A. Ovsyannikov for the valuable discussions and A.V. Shadrin for his help in fabricating the samples.

Funding

This work was supported in part by the Russian Foundation for Basic Research (project no. 17-02-00145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Atsarkin.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atsarkin, V.A., Demidov, V.V. & Shaikhulov, T.A. Influence of Magnetization on the Spin Pumping Efficiency in a Ferromagnet–Normal Metal Bilayer Structure. J. Exp. Theor. Phys. 130, 228–234 (2020). https://doi.org/10.1134/S1063776119120148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119120148

Navigation