Skip to main content
Log in

Marginal Effect of Structural Defects on the Nonequilibrium Critical Behavior of the Two-Dimensional Ising Model

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of various initial magnetizations m0 and structural defects on the nonequilibrium critical behavior of the two-dimensional Ising model is numerically simulated by Monte Carlo methods. Based on analysis of the time dependence of magnetization and the two-time dependences of autocorrelation function and dynamic susceptibility, we revealed the influence of logarithmic corrections and the crossover phenomena of percolation behavior on the nonequilibrium characteristics and the critical exponents. Violation of the fluctuation–dissipation theorem is studied, and the limiting fluctuation–dissipation ratio is calculated for the case of high-temperature initial state. The influence of various initial states on the limiting fluctuation–dissipation ratio is investigated. The nonequilibrium critical dynamics of weakly disordered systems with spin concentrations p ≥ 0.9 is shown to belong to the universality class of the nonequilibrium critical behavior of the pure model and to be characterized by the same critical exponents and the same limiting fluctuation–dissipation ratios. The nonequilibrium critical behavior of systems with p ≤ 0.85 demonstrates that the universal characteristics of the nonequilibrium critical behavior depend on the defect concentration and the dynamic scaling is violated, which is related to the influence of the crossover effects of percolation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).

    Article  ADS  Google Scholar 

  2. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

    Article  ADS  Google Scholar 

  3. R. B. Stinchcombe, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and J. L. Lebowitz (Academic, New York, 1983), Vol. 7, p. 151.

    Google Scholar 

  4. A. B. Harris, J. Phys. C 7, 1671 (1974).

    Article  ADS  Google Scholar 

  5. R. Fol’k, Yu. Golovach, and T. Yavorskii, Phys. Usp. 46, 169 (2003).

    Article  ADS  Google Scholar 

  6. A. K. Murtazaev, I. K. Kamilov, and A. B. Babaev, J. Exp. Theor. Phys. 99, 1201 (2004).

    Article  ADS  Google Scholar 

  7. V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, and A. S. Krinitsyn, J. Exp. Theor. Phys. 105, 371 (2007).

    Article  ADS  Google Scholar 

  8. V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Theoretical Methods for Describing the Nonequilibrium Critical Behavior of Structurally Disordered Systems (Nauka, Moscow, 2013) [in Russian].

    Google Scholar 

  9. P. E. Berche, C. Chatelain, B. Berche, and W. Janke, Eur. Phys. J. B 38, 463 (2004).

    Article  ADS  Google Scholar 

  10. M. Hasenbusch, F. P. Toldin, A. Pelissetto, and E. Vicari, J. Stat. Mech. 2007, P02016 (2007).

    Google Scholar 

  11. Vik. S. Dotsenko and Vl. S. Dotsenko, JETP Lett. 33, 37 (1981).

  12. B. N. Shalaev, Sov. Phys. Solid State 26, 1811 (1984).

    Google Scholar 

  13. B. N. Shalaev, Phys. Rep. 237, 129 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  14. J. S. Wang, W. Selke, Vl. S. Dotsenko, and V. B. Andreichenko, Phys. A (Amsterdam, Neth.) 164, 221 (1990).

  15. A. L. Talapov and L. N. Shchur, Europhys. Lett. 27, 193 (1994).

    Article  ADS  Google Scholar 

  16. A. L. Talapov and L. N. Shchur, J. Phys.: Condens. Matter 6, 8295 (1994).

    ADS  Google Scholar 

  17. W. Selke, L. N. Shchur, and A. L. Talapov, in Annual Reviews of Computational Physics I, Ed. by D. Staufer (World Scientific, Singapore, 1995), p. 17.

    Google Scholar 

  18. J. K. Kim and A. Patrascioiu, Phys. Rev. Lett. 72, 2785 (1994).

    Article  ADS  Google Scholar 

  19. S. L. A. de Queiroz and R. B. Stinchcombe, Phys. Rev. B 50, 9976 (1994).

    Article  ADS  Google Scholar 

  20. H. G. Ballesteros, L. A. Fernandez, V. Martin-Mayor, et al., J. Phys. A 30, 8379 (1997).

    Article  ADS  Google Scholar 

  21. W. Selke, L. N. Shchur, and O. A. Vasilyev, Phys. A (Amsterdam, Neth.) 259, 388 (1998).

  22. L. N. Shchur and O. A. Vasilyev, Phys. Rev. E 65, 016107 (2001).

    Article  ADS  Google Scholar 

  23. O. N. Markov and V. V. Prudnikov, JETP Lett. 60, 23 (1994).

    ADS  Google Scholar 

  24. V. V. Prudnikov and O. N. Markov, Europhys. Lett. 29, 245 (1995).

    Article  ADS  Google Scholar 

  25. E. Vincent, J. Hammann, M. Ocio, J. P. Bouchaud, and L. F. Cugliandolo, Lect. Notes Phys. 492, 184 (1997).

  26. L. Berthier and J. Kurchan, Nat. Phys. 9, 310 (2013).

    Article  Google Scholar 

  27. P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).

    Article  ADS  Google Scholar 

  28. V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Phys. Usp. 60, 762 (2017).

    Article  ADS  Google Scholar 

  29. F. Ricci-Tersenghi, Phys. Rev. E 68, 065104 (2003).

    Article  ADS  Google Scholar 

  30. C. Godreche, F. Krzakala, and F. Ricci-Tersenghi, J. Stat. Mech. 2004, P04007 (2004).

    Google Scholar 

  31. V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, JETP Lett. 98, 619 (2013).

    Article  Google Scholar 

  32. P. Calabrese, A. Gambassi, and F. Krzakala, J. Stat. Mech. 2006, P06016 (2006).

    Article  Google Scholar 

  33. W. Janke, Lect. Notes Phys. 739, 79 (2008).

  34. P. H. L. Martins and J. A. Plascak, Phys. Rev. E 76, 012102 (2007).

    Article  ADS  Google Scholar 

  35. H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B 73, 539 (1989).

    Article  ADS  Google Scholar 

  36. M. P. Nightingale and H. W. J. Blote, Phys. Rev. Lett. 76, 4548 (1996).

    Article  ADS  Google Scholar 

  37. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1991).

    MATH  Google Scholar 

  38. J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3428 (1976).

    Article  ADS  Google Scholar 

  39. V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and P. N. Malyarenko, JETP Lett. 107, 569 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The calculations were performed using the resources of the supercomputer center of Moscow State University and the supercomputer center of Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 17-12-00279, 18-42-550003, 19-32-50006, 20-32-70189) and grant MD-6868.2018.2 of the President of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Prudnikov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudnikov, V.V., Prudnikov, P.V., Malyarenko, P.N. et al. Marginal Effect of Structural Defects on the Nonequilibrium Critical Behavior of the Two-Dimensional Ising Model. J. Exp. Theor. Phys. 130, 258–273 (2020). https://doi.org/10.1134/S1063776120010161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120010161

Navigation