Skip to main content
Log in

Review of Nontopological Solitons in Theories with U(1)-Symmetry

  • REVIEW
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We provide a review of nontopological solitonic solutions arising in theories with a complex scalar field and global or gauge U(1)-symmetry. It covers Q-balls, homogeneous charged scalar condensates, and nonlinear localized holes and bulges in a classically stable condensate. A historical overview is followed by the discussion of properties of solutions, including their stability, from different perspectives. Solitons in models with additional massive degrees of freedom are also revisited, and their relation to one-field Q-balls is showed. We also discuss theories with a gauge field giving rise to gauged Q-balls and theories with dynamical gravity giving rise to boson stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. The exact solution they found was already known by that time.

  2. Such solutions are also referred to as solitary waves.

  3. Although it may not be absolutely stable, see Section 2.3.

  4. By spatially homogeneous we understand a solution both magnitude and phase of which are independent of position in space. Note that it is possible to construct configurations breaking spatial translations spontaneously but with the linear combination of translation and U(1) generators remain unbroken; see, e.g., [33].

  5. There can be only a finite number of solutions which differ by the angular velocity but have coincident E and Q.

  6. If the requirement for f to be monotonic is omitted, the profile develops nodes at finite r, and one speaks of “excited states” of Q-balls (see, e.g., [45]).

  7. Note that the charge and energy defined by Eqs. (13) make sense not only for solutions of the equation of motion, but for general configurations of the form (6). Hence, they depend on infinite number of parameters. We choose ω to parameterize one-dimensional sets of Q-balls and other solutions. Then, ∂Q/∂ω and ∂E/∂ω are understood as directional derivatives of Q and E along a set of solutions. On this set, the relations (14) and (15) hold.

  8. If one permits unbounded from below potentials, it is enough to have a quartic nonlinearity, V = m2ϕ*ϕ – λ(ϕ*ϕ)2 [51]. However, the Q-balls in this potential are all unstable.

  9. To authors’ knowledge, the relevance of the shear force to understanding the properties of Q-balls was first pointed out in [54].

  10. There is no general proof of the uniqueness of a zero mode for classically unstable Q-balls, but it happens to be unique in all explicit calculations, see [55] for further discussion.

  11. It is interesting to note that the condition analogous to (24) was obtained earlier for solutions of the nonlinear Schrödinger equation [64, 65].

  12. It is possible to make L much larger than the size of the Q-ball with the charge equal to Qc.

  13. The similar question is discussed in [56].

  14. The fundamental solution of the NSE describing the dark soliton was first obtained in [85].

  15. The Bose–Einstein condensate is not to be confused with the scalar condensate discussed in Section 2. In our notations, the latter is relativistic and homogeneous, while the former is nonrelativistic and, in general, nonhomogeneous.

  16. Such complex kinks can be identified with sphalerons in the abelian Higgs model, see Ch. 11 of [100].

  17. In finite volume the requirement |Erel| < ∞ is unnecessary, and the angular velocity of a Q-hole (Q-bulge) does not, in general, coincide with the angular velocity of a condensate.

  18. The integrability of the model is due to the fact that it corresponds to the problem of motion of classical particles in the Hénon–Heiles potential [103].

  19. Note that, contrary to the case of one scalar field, a two-field potential allowing for Q-balls can be renormalizable.

  20. Interestingly, both global [13] and gauged [67] Q-balls were proposed in a successive order in the same issue of the journal.

  21. Although this fact has not been proved rigorously, it happens to be true in numerical calculations.

  22. It is worth noting that stationary spherically symmetric scalar field configurations with the horizon do not exist in theories satisfying the weak energy condition, with the canonical scalar field kinetic term, and with the minimal coupling of the scalar field to gravity [115]. Such solutions (black holes with scalar hair) were obtained in the class of axially symmetric, rotating configurations; see [116] for a review.

  23. What matters in this case is the response of the mass distribution of a compact object to a tidal field (see, e.g., [124, 125]). This is an example of the “effacement” of an internal structure of bodies in respect of the external problem of their motion [126].

REFERENCES

  1. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).

    Article  ADS  Google Scholar 

  2. J. K. Perring and T. H. R. Skyrme, Nucl. Phys. 31, 550 (1962).

    Article  Google Scholar 

  3. A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin, IEEE Proc. 61, 1443 (1973).

  4. V. G. Makhankov, Phys. Rep. 35, 1 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. R. Coleman, in New Phenomena in Subnuclear Physics, Proceedings of the International School of Subnuclear Physics, Erice, Sicily, July 11–Aug. 1, 1975, Subnucl. Ser. 13, 297 (1977).

  6. Selected Papers, with Commentary, of Tony Hilton Royle Skyrme, Ed. by G. E. Brown (World Scientific, Singapore, 1995).

    Google Scholar 

  7. S. R. Coleman, Nucl. Phys. B 262, 263 (1985);

    Article  ADS  Google Scholar 

  8. Nucl. Phys. B 269, 744(E) (1986).

  9. E. Nugaev, A. Shkerin, and M. Smolyakov, J. High Energy Phys. 12, 032 (2016); arXiv: 1609.05568 [hep-th].

  10. N. H. Christ and T. D. Lee, Phys. Rev. D 12, 1606 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Rajaraman, Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland, Amsterdam, 1982).

    MATH  Google Scholar 

  12. T. D. Lee and Y. Pang, Phys. Rep. 221, 251 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. M. Shnir, Topological and Nontopological Solitons in Scalar Field Theories (Cambridge Univ. Press, Cambridge, 2018).

    Book  MATH  Google Scholar 

  14. G. Rosen, J. Math. Phys. 9, 996 (1968).

    Article  ADS  Google Scholar 

  15. A. Kusenko, Phys. Lett. B 405, 108 (1997); arXiv: hep-ph/9704273.

    Article  ADS  MathSciNet  Google Scholar 

  16. G. R. Dvali, A. Kusenko, and M. E. Shaposhnikov, Phys. Lett. B 417, 99 (1998); arXiv: hep-ph/9707423.

    Article  ADS  Google Scholar 

  17. A. Kusenko, M. E. Shaposhnikov, and P. G. Tinyakov, JETP Lett. 67, 247 (1998); arXiv: hep-th/9801041.

    Article  ADS  Google Scholar 

  18. I. Affleck and M. Dine, Nucl. Phys. B 249, 361 (1985).

    Article  ADS  Google Scholar 

  19. J. A. Frieman, G. B. Gelmini, M. Gleiser, and E. W. Kolb, Phys. Rev. Lett. 60, 2101 (1988).

    Article  ADS  Google Scholar 

  20. A. Kusenko and M. E. Shaposhnikov, Phys. Lett. B 418, 46 (1998); arXiv: hep-ph/9709492.

    Article  ADS  Google Scholar 

  21. F. H. Vincent, Z. Meliani, P. Grandclement, E. Gourgoulhon, and O. Straub, Class. Quantum. Grav. 33, 105015 (2016); arXiv: 1510.04170 [gr-qc].

  22. S. Troitsky, J. Cosmol. Astropart. Phys. 1611, 027 (2016); arXiv: 1510.07132 [hep-ph].

  23. K. Akiyama et al. (Event Horizon Telescope), Astrophys. J. 875, L1 (2019).

    Article  ADS  Google Scholar 

  24. B. W. Lynn, in Proceedings of the 6th Advanced Course in Theoretical Physics: Phase Structure of Strongly Interacting Matter, Cape Town, South Africa, January 8–19, 1990, Nucl. Phys. B 321, 465 (1989).

    Article  ADS  Google Scholar 

  25. S. L. Liebling and C. Palenzuela, Living Rev. Rel. 15, 6 (2012);

    Article  Google Scholar 

  26. Living Rev. Rel. 20, 5 (2017); arXiv: 1202.5809 [gr-qc].

  27. I. L. Bogolyubsky and V. G. Makhankov, JETP Lett. 24, 12 (1976).

    ADS  Google Scholar 

  28. M. Gleiser, Phys. Rev. D 49, 2978 (1994); arXiv: hep-ph/9308279.

    Article  ADS  Google Scholar 

  29. M. A. Amin, R. Easther, H. Finkel, R. Flauger, and M. P. Hertzberg, Phys. Rev. Lett. 108, 241302 (2012); arXiv: 1106.3335 [astro-ph.CO].

    Article  ADS  Google Scholar 

  30. K. D. Lozanov and M. A. Amin, Phys. Rev. D 90, 083528 (2014); arXiv: 1408.1811 [hep-ph].

    Article  ADS  Google Scholar 

  31. E. Cotner, A. Kusenko, and V. Takhistov, arXiv: 1801.03321 [astro-ph.CO] (2018).

  32. K. D. Lozanov and M. A. Amin, arXiv: 1902.06736 [astro-ph.CO] (2019).

  33. K. Mukaida, M. Takimoto, and M. Yamada, J. High Energy Phys. 03, 122 (2017); arXiv: 1612.07750 [hep-ph].

  34. M. H. Namjoo, A. H. Guth, and D. I. Kaiser, Phys. Rev. D 98, 016011 (2018); arXiv: 1712.00445 [hep-ph].

  35. D. Musso, arXiv: 1810.01799 [hep-th] (2018).

  36. M. A. Amin, M. P. Hertzberg, D. I. Kaiser, and J. Karouby, Int. J. Mod. Phys. D 24, 1530003 (2014); arXiv: 1410.3808 [hep-ph].

    Article  ADS  Google Scholar 

  37. S. Kasuya and M. Kawasaki, Phys. Rev. D 62, 023512 (2000); arXiv: hep-ph/0002285.

    Article  ADS  Google Scholar 

  38. V. A. Rubakov and D. S. Gorbunov, Introduction to the Theory of the Early Universe (World Scientific, Singapore, 2017).

    Book  MATH  Google Scholar 

  39. R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev. D 13, 2739 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  40. M. S. Volkov and E. Wohnert, Phys. Rev. D 66, 085003 (2002); arXiv: hep-th/0205157.

    Article  ADS  Google Scholar 

  41. B. Kleihaus, J. Kunz, and M. List, Phys. Rev. D 72, 064002 (2005); arXiv: gr-qc/0505143.

    Article  ADS  MathSciNet  Google Scholar 

  42. N. Sakai, H. Ishihara, and K.-i. Nakao, Phys. Rev. D 84, 105022 (2011); arXiv: 1011.4828 [hep-th].

    Article  ADS  Google Scholar 

  43. T. Tamaki and N. Sakai, Phys. Rev. D 86, 105011 (2012); arXiv: 1208.4440 [gr-qc].

    Article  ADS  Google Scholar 

  44. E. Nugaev and A. Shkerin, Phys. Rev. D 90, 016002 (2014); arXiv: 1404.3207 [hep-th].

    Article  ADS  Google Scholar 

  45. G. H. Derrick, J. Math. Phys. 5, 1252 (1964).

    Article  ADS  Google Scholar 

  46. R. S. Palais, Commun. Math. Phys. 69, 19 (1979).

    Article  ADS  Google Scholar 

  47. M. Mai and P. Schweitzer, Phys. Rev. D 86, 096002 (2012); arXiv: 1206.2930 hep-ph].

  48. T. I. Belova, N. A. Voronov, N. B. Konyukhova, and B. S. Pariisky, Phys. At. Nucl. 57, 2028 (1994).

    Google Scholar 

  49. S. Theodorakis, Phys. Rev. D 61, 047701 (2000).

    Article  ADS  Google Scholar 

  50. I. E. Gulamov, E. Ya. Nugaev, and M. N. Smolyakov, Phys. Rev. D 87, 085043 (2013); arXiv: 1303.1173 [hep-th].

    Article  ADS  Google Scholar 

  51. M. Laine and M. E. Shaposhnikov, Nucl. Phys. B 532, 376 (1998); arXiv: hep-ph/9804237.

    Article  ADS  Google Scholar 

  52. A. Nicolis and F. Piazza, J. High Energy Phys. 06, 025 (2012); arXiv: 1112.5174 [hep-th].

  53. D. L. T. Anderson and G. H. Derrick, J. Math. Phys. 11, 1336 (1970).

    Article  ADS  Google Scholar 

  54. F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008); arXiv: 0710.3755 [hep-th].

    Article  ADS  Google Scholar 

  55. F. Bezrukov and M. Shaposhnikov, J. High Energy Phys. 07, 089 (2009); arXiv: 0904.1537 [hep-ph].

  56. M. Mai and P. Schweitzer, Phys. Rev. D 86, 076001 (2012); arXiv: 1206.2632 [hep-ph].

    Article  ADS  Google Scholar 

  57. A. G. Panin and M. N. Smolyakov, Phys. Rev. D 95, 065006 (2017); arXiv: 1612.00737 [hep-th].

  58. K.-M. Lee and E. J. Weinberg, Nucl. Phys. B 267, 181 (1986).

    Article  ADS  Google Scholar 

  59. D. Levkov, E. Nugaev, and A. Popescu, J. High Energy Phys. 12, 131 (2017); arXiv: 1711.05279 [hep-ph].

  60. A. G. Cohen, S. R. Coleman, H. Georgi, and A. Manohar, Nucl. Phys. B 272, 301 (1986).

    Article  ADS  Google Scholar 

  61. M. Kawasaki and M. Yamada, Phys. Rev. D 87, 023517 (2013); arXiv: 1209.5781 [hep-ph].

    Article  ADS  Google Scholar 

  62. A. Kovtun and E. Nugaev, Mod. Phys. Lett. A 32, 1750198 (2017); arXiv: 1612.00700 [hep-ph].

  63. M. N. Smolyakov, Phys. Rev. D 97, 045011 (2018); arXiv: 1711.05730 [hep-th].

  64. A. Kovtun, E. Nugaev, and A. Shkerin, Phys. Rev. D 98, 096016 (2018); arXiv: 1805.03518 [hep-th].

  65. V. E. Zakharov and E. A. Kuznetsov, Phys. Usp. 55, 535 (2012).

    Article  ADS  Google Scholar 

  66. N. G. Vakhitov and A. A. Kolokolov, Radiophys. Quantum Electron. 16, 783 (1973).

    Article  ADS  Google Scholar 

  67. A. A. Kolokolov, J. Appl. Mech. Tech. Phys. 14, 426 (1973).

    Article  ADS  Google Scholar 

  68. M. G. Alford, Nucl. Phys. B 298, 323 (1988).

    Article  ADS  Google Scholar 

  69. G. Rosen, J. Math. Phys. 9, 999 (1968). https://doi.org/10.1063/1.1664694

    Article  ADS  Google Scholar 

  70. E. Nugaev and A. Shkerin, Phys. Lett. B 747, 287 (2015); arXiv: 1501.05903 [hep-ph].

  71. E. W. Kolb and I. I. Tkachev, Phys. Rev. Lett. 71, 3051 (1993); arXiv: hep-ph/9303313.

    Article  ADS  Google Scholar 

  72. A. Kusenko, Phys. Lett. B 406, 26 (1997); arXiv: hep-ph/9705361.

    Article  ADS  MathSciNet  Google Scholar 

  73. S. Khlebnikov and I. Tkachev, Phys. Rev. D 61, 083517 (2000); arXiv: hep-ph/9902272.

    Article  ADS  Google Scholar 

  74. M. A. Amin, arXiv: 1006.3075 [astro-ph.CO] (2010).

  75. E. Krylov, A. Levin, and V. Rubakov, Phys. Rev. D 87, 083528 (2013); arXiv: 1301.0354 [hep-ph].

    Article  ADS  Google Scholar 

  76. V. E. Zakharov, Sov. Phys. JETP 26, 994 (1968).

    ADS  Google Scholar 

  77. Y. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Elsevier Science, Amsterdam, 2003).

    Google Scholar 

  78. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Lect. Notes Phys. 661, 1 (2005).

    Book  MATH  Google Scholar 

  79. A. Kumar, Phys. Rep. 187, 63 (1990).

    Article  ADS  Google Scholar 

  80. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973). https://doi.org/10.1063/1.1654836

    Article  ADS  Google Scholar 

  81. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973). https://doi.org/10.1063/1.1654847

    Article  ADS  Google Scholar 

  82. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).

    Article  ADS  Google Scholar 

  83. A. Hasegawa, Chaos 10, 475 (2000). https://doi.org/10.1063/1.1286914

    Article  ADS  MathSciNet  Google Scholar 

  84. S. Blair and K. Wagner, in Collision-Based Computing, Ed. by A. Adamatzky (Springer, London, 2002), p. 355.

    Google Scholar 

  85. F. Mitschke, A. Hause, C. Mahnke, and P. Rohrmann, Nonlin. Phenom. Complex Syst. 15, 369 (2012).

    Google Scholar 

  86. Y. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993).

    Article  ADS  Google Scholar 

  87. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 37, 823 (1973).

    ADS  Google Scholar 

  88. A. M. Weiner, J. Heritage, R. Hawkins, R. N. Thurston, E. M. Kirschner, D. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).

    Article  ADS  Google Scholar 

  89. L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, International Series of Monographs on Physics (Oxford Univ. Press, New York, 2003).

  90. C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd ed. (Cambridge Univ. Press, Cambridge, 2008).

    Book  Google Scholar 

  91. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  92. L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. Rev. A 63, 023611 (2001); arXiv: gr-qc/0005131.

    Article  ADS  Google Scholar 

  93. O. Lahav, A. Itah, A. Blumkin, C. Gordon, and J. Steinhauer, Phys. Rev. Lett. 105, 240401 (2010); arXiv: 0906.1337 [cond-mat.quant-gas].

    Article  ADS  Google Scholar 

  94. A. Suarez, V. H. Robles, and T. Matos, in Proceedings of 4th International Meeting on Gravitation and Cosmology (MGC 4), Santa Clara, Cuba, June 1–4, 2009, Astrophys. Space Sci. Proc. 38, 107 (2014); arXiv: 1302.0903 [astro-ph.CO].

  95. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).

    Article  ADS  Google Scholar 

  96. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999).

    Article  ADS  Google Scholar 

  97. K. Enqvist and M. Laine, J. Cosmol. Astropart. Phys. 0308, 003 (2003); arXiv: cond-mat/0304355.

  98. Yu. M. Bunkov and G. E. Volovik, Phys. Rev. Lett. 98, 265302 (2007); arXiv: cond-mat/0703183 [cond-mat.soft].

    Article  ADS  Google Scholar 

  99. R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 10, 4130 (1974).

    Article  ADS  Google Scholar 

  100. A. M. Polyakov, JETP Lett. 20, 194 (1974).

    ADS  Google Scholar 

  101. J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486 (1975).

    Article  ADS  Google Scholar 

  102. N. S. Manton and P. Sutcliffe, Topological Solitons, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, 2004).

  103. T. D. Lee, Comm. Nucl. Part. Phys. 7, 165 (1978).

    Google Scholar 

  104. E. Nugaev, Commun. Nonlin. Sci. Numer. Simul. 20, 443 (2015); arXiv: 1403.0434 [hep-th].

  105. M. Henon and C. Heiles, Astron. J. 69, 73 (1964).

    Article  ADS  Google Scholar 

  106. D. B. Kaplan, Nucl. Phys. B 494, 471 (1997); arXiv: nucl-th/9610052.

    Article  ADS  Google Scholar 

  107. P. F. Bedaque, H. W. Hammer, and U. van Kolck, Phys. Rev. Lett. 82, 463 (1999); arXiv: nucl-th/9809025.

    Article  ADS  Google Scholar 

  108. I. E. Gulamov, E. Ya. Nugaev, A. G. Panin, and M. N. Smolyakov, Phys. Rev. D 92, 045011 (2015); arXiv: 1506.05786 [hep-th].

  109. V. Loiko, I. Perapechka, and Ya. Shnir, Phys. Rev. D 98, 045018 (2018); arXiv: 1805.11929 [hep-th].

  110. K.-M. Lee, J. A. Stein-Schabes, R. Watkins, and L. M. Widrow, Phys. Rev. D 39, 1665 (1989).

    Article  ADS  Google Scholar 

  111. H. Arodz and J. Lis, Phys. Rev. D 79, 045002 (2009); arXiv: 0812.3284 [hep-th].

    Article  ADS  Google Scholar 

  112. I. E. Gulamov, E. Ya. Nugaev, and M. N. Smolyakov, Phys. Rev. D 89, 085006 (2014); arXiv: 1311.0325 [hep-th].

    Article  ADS  Google Scholar 

  113. T. Tamaki and N. Sakai, Phys. Rev. D 90, 085022 (2014).

    Article  ADS  Google Scholar 

  114. P. Jetzer, Phys. Rep. 220, 163 (1992).

    Article  ADS  Google Scholar 

  115. R. Friedberg, T. D. Lee, and Y. Pang, Phys. Rev. D 35, 3640 (1987).

    Article  ADS  Google Scholar 

  116. B. Kleihaus, J. Kunz, M. List, and I. Schaffer, Phys. Rev. D 77, 064025 (2008); arXiv: 0712.3742 [gr-qc].

    Article  ADS  MathSciNet  Google Scholar 

  117. I. Pena and D. Sudarsky, Class. Quantum Grav. 14, 3131 (1997).

    Article  ADS  Google Scholar 

  118. C. A. R. Herdeiro and E. Radu, in Proceedings of the 7th Black Holes Workshop 2014, Aveiro, Portugal, December 18–19, 2014, Int. J. Mod. Phys. D 24, 1542014 (2015); arXiv: 1504.08209 [gr-qc].

  119. V. Cardoso and P. Pani, arXiv: 1904.05363 [gr-qc] (2019).

  120. T. D. Lee, Phys. Rev. D 35, 3637 (1987).

    Article  ADS  Google Scholar 

  121. J.-w. Lee and I.-g. Koh, Phys. Rev. D 53, 2236 (1996); arXiv: hep-ph/9507385.

    Article  ADS  Google Scholar 

  122. H. A. Buchdahl, Phys. Rev. 116, 1027 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  123. B. Kleihaus, J. Kunz, and S. Schneider, Phys. Rev. D 85, 024045 (2012); arXiv: 1109.5858 [gr-qc].

    Article  ADS  Google Scholar 

  124. M. Kesden, J. Gair, and M. Kamionkowski, Phys. Rev. D 71, 044015 (2005); arXiv: astro-ph/0411478.

    Article  ADS  Google Scholar 

  125. P. Grandclement, Phys. Rev. D 95, 084011 (2017); arXiv: 1612.07507 [gr-qc].

  126. P. Pani, L. Gualtieri, A. Maselli, and V. Ferrari, Phys. Rev. D 92, 024010 (2015); arXiv: 1503.07365 [gr-qc].

  127. V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo, Phys. Rev. D 95, 084014 (2017);

    Article  ADS  Google Scholar 

  128. Phys. Rev. D 95, 089901 (2017); arXiv: 1701.01116 [gr-qc].

  129. T. Damour, in Three Hundred Years of Gravitation, Ed. by S. W. Hawking and W. Israel (Cambridge Univ. Press, New York, 1987), p. 128.

    Google Scholar 

  130. V. Cardoso, S. Hopper, C. F. B. Macedo, C. Palenzuela, and P. Pani, Phys. Rev. D 94, 084031 (2016); arXiv: 1608.08637 [gr-qc].

  131. L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev. D 95, 043541 (2017); arXiv: 1610.08297 [astro-ph.CO].

  132. A. R. Liddle and M. S. Madsen, Int. J. Mod. Phys. D 1, 101 (1992).

    Article  ADS  Google Scholar 

  133. E. Seidel and W.-M. Suen, Phys. Rev. Lett. 72, 2516 (1994); arXiv: gr-qc/9309015.

    Article  ADS  Google Scholar 

  134. F. S. Guzman and L. A. Urena-Lopez, Astrophys. J. 645, 814 (2006); arXiv: astro-ph/0603613.

    Article  ADS  Google Scholar 

  135. R. Brito, V. Cardoso, C. F. B. Macedo, H. Okawa, and C. Palenzuela, Phys. Rev. D 93, 044045 (2016); arXiv: 1512.00466 [astro-ph.SR].

  136. D. G. Levkov, A. G. Panin, and I. I. Tkachev, Phys. Rev. Lett. 121, 151301 (2018); arXiv: 1804.05857 [astro-ph.CO].

  137. M. A. Amin and P. Mocz, arXiv: 1902.07261 [astro-ph.CO] (2019).

Download references

ACKNOWLEDGMENTS

The authors are grateful to Adrien Florio, Alexander Panin, D. Levkov, Mikhail Shaposhnikov, Yakov Shnir, Mikhail Smolyakov, Inar Timiryasov and Sergey Troitsky for useful discussions and critical comments on the manuscript. The work of E.N. (Sections 1, 2, 3.1) was supported by the Russian Science Foundation Grant no. RSF 16-12-10-494. The work of A.S. (Sections 3.2, 3.3, 4, 5) was supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Ya. Nugaev or A. V. Shkerin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nugaev, E.Y., Shkerin, A.V. Review of Nontopological Solitons in Theories with U(1)-Symmetry. J. Exp. Theor. Phys. 130, 301–320 (2020). https://doi.org/10.1134/S1063776120020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120020077

Navigation