Skip to main content
Log in

Self-Consistent Consideration of Fluctuations in Singlet Superconducting Phases with s and d Symmetry

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the behavior of thermal fluctuations of the superconducting order parameter with extended s-wave and \({{d}_{{{{x}^{2}} - {{y}^{2}}}}}\)-wave symmetry. For this purpose, we develop a method of self-consistent consideration of the order parameter fluctuations and charge carrier scatterers by fluctuations of coupled electron pairs using the theory of functional integration. The study is performed based on the quasi-two-dimensional one-band model with attraction between electrons located at neighboring sites. We obtain the distribution functions of the phase fluctuation probabilities depending on temperature, charge carrier concentrations, and model parameters. It is shown that the phase of the order parameter in the superconducting region is coherent, and the density of states has a dip at the Fermi level. In approaching the incoherent region of the phase diagram, the dip in the density of states disappears simultaneously with the loss of phase coherence. At the same time, the order parameter amplitude averaged over fluctuations remains finite at any temperature and concentration of charge carriers. Our results show that the pseudogap state cannot be explained in the frames of this scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. T. Timusk and B. Statt, Rep. Progr. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  2. V. M. Loktev, R. M. Quick, and S. G. Sharapov, Phys. Rep. 349, 1 (2001).

    Article  ADS  Google Scholar 

  3. M. V. Sadovskii, Phys. Usp. 44, 515 (2001).

    Article  ADS  Google Scholar 

  4. V. J. Emery and S. A. Kivelson, Nature (London, U.K.) 374, 434 (1995).

    Article  ADS  Google Scholar 

  5. P. Curty and H. Beck, Phys. Rev. Lett. 85, 796 (2000).

    Article  ADS  Google Scholar 

  6. D. Bormannt and H. Beck, J. Stat. Phys. 76, 361 (1994).

    Article  ADS  Google Scholar 

  7. P. Curty and H. Beck, Phys. Rev. Lett. 91, 257002 (2003).

    Article  ADS  Google Scholar 

  8. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  9. F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D. H. Lee, Phys. Rev. Lett. 102, 047005 (2009).

    Article  ADS  Google Scholar 

  10. D. A. Wollman, D. J. van Harlingen, W. C. Lee, D. M. Ginsberg, and A. J. Leggett, Phys. Rev. Lett. 71, 2134 (1993).

    Article  ADS  Google Scholar 

  11. C. C. Tsuei and J. R. Irtley, Rev. Mod. Phys. 72, 969 (2000).

    Article  ADS  Google Scholar 

  12. D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190(R) (1986).

  13. J. R. Schrieffer, Kh. G. Wen, and S. S. Zhang, Phys. Rev. B 39, 11663 (1989).

    Article  ADS  Google Scholar 

  14. Yu. A. Izyumov, Phys. Usp. 42, 215 (1999).

    Article  Google Scholar 

  15. D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).

    Article  ADS  Google Scholar 

  16. A. M. Hybertsen, E. Stechel, W. Foulkes, and M. Schlüter, Phys. Rev. B 45, 10032 (1992).

    Article  ADS  Google Scholar 

  17. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1136 (1966);

    Article  ADS  Google Scholar 

  18. P. C. Hohenberg, Phys. Rev. 158, 383 (1967);

    Article  ADS  Google Scholar 

  19. S. Coleman, Commun. Math. Phys. 31, 264 (1973).

    Article  ADS  Google Scholar 

  20. G. Su, A. Schadschneider, and J. Zittartz, Phys. Lett. A 230, 99 (1997).

    Article  ADS  Google Scholar 

  21. G. Su and M. Suzuki, Phys. Rev. B 58, 117 (1998).

    Article  ADS  Google Scholar 

  22. V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1970);

    ADS  MathSciNet  Google Scholar 

  23. J. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  24. V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. 74, 3253 (1995).

    Article  ADS  Google Scholar 

  25. D. Ariosa, H. Beck, and M. Capezzali, J. Phys. Chem. Sol. 59, 1783 (1998).

    Article  ADS  Google Scholar 

  26. Yu. A. Izyumov and Yu. N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems (Springer, New York, 1988).

    Google Scholar 

  27. B. L. Gyorffy, J. B. Staunton, and G. M. Stocks, Phys. Rev. B 44, 5190 (1990).

    Article  ADS  Google Scholar 

  28. Y. Dubi, Y. Meir, and Y. Avishai, Nature (London, U.K.) 449, 876 (2007).

    Article  ADS  Google Scholar 

  29. M. Mayr, G. Alvarez, C. Sen, and E. Dagotto, Phys. Rev. Lett. 94, 217001 (2005).

    Article  ADS  Google Scholar 

  30. V. P. Gusynin, V. M. Loktev, and S. G. Sharapov, JETP Lett. 65, 182 (1997).

    Article  ADS  Google Scholar 

  31. D. Gerald and Mahan, Many-Particle Physics (Kluwer Academic, Dordrecht, 2000).

  32. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzya-loshinskii, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, NJ, 1963; Fizmatgiz, Moscow, 1962).

  33. M. A. Timirgazin, V. F. Gilmutdinov, and A. K. Arzhnikov, Phys. C (Amsterdam, Neth.) 557, 7 (2019).

  34. K. K. Gomes, A. N. Pasupathy, A. Pushp, S. Ono, Y. Ando, and A. Yazdani, Nature (London, U.K.) 447, 569 (2007).

    Article  ADS  Google Scholar 

  35. E. Ni. Foo, H. Amar, and M. Ausloos, Phys. Rev. B 4, 3350 (1971).

    Article  ADS  Google Scholar 

  36. H. Shiba, Progr. Theor. Phys. Rev. B 46, 77 (1971).

    Article  ADS  Google Scholar 

  37. F. Brouers and J. van der Rest, J. Phys. F: Met. Phys. 26, 1070 (1972).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported in part by the grant no. 18-2-2-12 from the Ural Branch of the Russian Academy of Sciences and financing program no. AAAA-A16-116021010082-8.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Groshev or A. K. Arzhnikov.

Additional information

Translated by N. Wadhwa

Green’s Functions in TCPA

Green’s Functions in TCPA

As noted above, Hamiltonian \({{\mathcal{H}}_{{HF}}}\) (4) of the model considered here in the HF approximation describes the properties of the system disregarding the superconducting OP fluctuations. The consideration fluctuations requires the introduction of fluctuating Δ\(\mathcal{U}\) potential (4) and leads to the problem of nondiagonal disorder in disordered systems. This problem can be solved in the given case using the two-site coherent potential approximation (TCPA) [32–34]. In the case considered here, this approximation implies that the scattering electron pair with fluctuating potential Δ\(\mathcal{U}\) (4) is inbuilt into the effective medium consisting of electron pairs with effective parameters determined by the self-energy part \(\hat {\Sigma }\)(iωn),

$$\begin{gathered} \hat {\Sigma }(i{{\omega }_{n}}) = \sum\limits_{j,\delta }^{} {\hat {c}_{{j\delta }}^{\dag }{{\Sigma }_{{j\delta }}}(i{{\omega }_{n}}){{{\hat {c}}}_{{j\delta }}},} \\ {{\Sigma }_{{j\delta }}}(i{{\omega }_{n}}) = \left[ {\begin{array}{*{20}{c}} {\Sigma _{{j,j}}^{ \uparrow }(i{{\omega }_{n}})}&{\Sigma _{{j,j + \delta }}^{{ \uparrow \downarrow }}(i{{\omega }_{n}})} \\ {\Sigma _{{j + \delta ,j}}^{{ \downarrow \uparrow }}(i{{\omega }_{n}})}&{\Sigma _{{j + \delta ,j{\text{ + }}\delta }}^{ \downarrow }(i{{\omega }_{n}})} \end{array}} \right], \\ \end{gathered} $$
$$\begin{gathered} \Sigma _{{j,j}}^{ \uparrow }(i{{\omega }_{n}}) = {{\Sigma }^{ \uparrow }}(i{{\omega }_{n}}){\text{/}}4, \\ \Sigma _{{j + \delta ,j + \delta }}^{ \downarrow }(i{{\omega }_{n}}) = {{\Sigma }^{ \downarrow }}(i{{\omega }_{n}}){\text{/}}4, \\ \end{gathered} $$
(A.1)
$$\begin{gathered} \Sigma _{{j,j + \delta }}^{{ \uparrow \downarrow }}(i{{\omega }_{n}}) = {{\Sigma }^{{ \uparrow \downarrow }}}(i{{\omega }_{n}})\exp (i{{\alpha }_{\delta }}), \\ \Sigma _{{j + \delta ,j}}^{{ \downarrow \uparrow }}(i{{\omega }_{n}}) = {{\Sigma }^{{ \uparrow \downarrow }}}(i{{\omega }_{n}})\exp ( - i{{\alpha }_{\delta }}), \\ \end{gathered} $$

which has the same functional form as \({{\hat {\mathcal{H}}}_{{HF}}}\) (4) and preserves complete symmetry of the system under investigation. Therefore, temperature Green function Gjδ(iωn, λ) (10) in this approximation is described by the Dyson equation with fluctuating potential Δ\(\mathcal{U}\) (4):

$$\begin{gathered} {{G}_{{j\delta }}}(i{{\omega }_{n}},\delta ) = {{F}_{{j\delta }}}(i{{\omega }_{n}}) \\ \, + {{F}_{{j\delta }}}(i{{\omega }_{n}})[\lambda \Delta {{\mathcal{U}}_{{j\delta }}} - {{\Sigma }_{{j\delta }}}(i{{\omega }_{n}})]{{G}_{{j\delta }}}(i{{\omega }_{n}},\lambda ) \\ = {{F}_{{j\delta }}}(i{{\omega }_{n}}) + {{F}_{{j\delta }}}(i{{\omega }_{n}}){{T}_{{j\delta }}}(i{{\omega }_{n}}){{F}_{{j\delta }}}(i{{\omega }_{n}}), \\ \end{gathered} $$
(A.2)

where Fjδ(iωn) is the Fourier transform of the effective temperature Green function and Tjδ(iωn) is the Fourier transform of the electron pair scattering matrix with fluctuating potential (4). Then self-energy part Σjδ(iωn) can be determined self-consistently from the requirement of the absence of scattering by this electron pair on the average, 〈Tjδ(iωn, λ)〉 = 0 or 〈Gjδ(iωn, λ)〉 = Fjδ(iωn).

Explicit expressions for the matrix elements of Green’s functions in the representation of the Nambu matrices can be obtained using the Fourier transformation of the creation (annihilation) operators \(\hat {c}_{{js}}^{\dag }\)(\({{\hat {c}}_{{js}}}\)),

$$\hat {c}_{{js}}^{\dag }({{\hat {c}}_{{js}}}) = \frac{1}{N}\sum\limits_k^{} {\exp [ \mp ik{{R}_{j}}]\hat {c}_{{ks}}^{\dag }({{{\hat {c}}}_{{ks}}}),} $$
(A.3)

where N is the number of sites in the system, Rj are the square lattice vectors, \(\hat {c}_{{ks}}^{\dag }\)(\({{\hat {c}}_{{ks}}}\)) are the creation (annihilation) operators for electron with momentum k and spin projection s. As a result of this transformation, Hamiltonian \({{\hat {\mathcal{H}}}_{{HF}}}\) (4) of the given system in the HF approximation can be written in the representation of Nambu matrices

$${{\hat {c}}_{k}} = \left[ \begin{gathered} {{{\hat {c}}}_{{k \uparrow }}} \\ \hat {c}_{{ - k \downarrow }}^{\dag } \\ \end{gathered} \right],\quad \hat {c}_{k}^{\dag } = [c_{{k \uparrow }}^{\dag }\,\,{{\hat {c}}_{{ - k \downarrow }}}]$$
(A.4)

in form

$$\begin{gathered} {{{\hat {\mathcal{H}}}}_{{HF}}}(\bar {\Delta },\alpha ) = \frac{1}{N}\sum\limits_k^{} {\hat {c}_{k}^{\dag }{{\mathcal{H}}_{{HF}}}(k){{{\hat {c}}}_{k}},} \\ {{\mathcal{H}}_{{HF}}}(k) = \left[ {\begin{array}{*{20}{c}} {\mathcal{H}_{{HF}}^{{ \uparrow \uparrow }}(k)}&{\mathcal{H}_{{HF}}^{{ \uparrow \downarrow }}(k)} \\ {\mathcal{H}_{{HF}}^{{ \downarrow \uparrow }}(k)}&{\mathcal{H}_{{HF}}^{{ \downarrow \downarrow }}(k)} \end{array}} \right], \\ \end{gathered} $$
$$\begin{gathered} \mathcal{H}_{{HF}}^{{ \uparrow \uparrow }}(k) = {{\varepsilon }_{k}} - \mu ,\quad \mathcal{H}_{{HF}}^{{ \downarrow \downarrow }}(k) = - {{\varepsilon }_{k}} + \mu , \\ \mathcal{H}_{{HF}}^{{ \uparrow \downarrow }}(k) = - 2V\bar {\Delta }{{V}_{k}}(\alpha ), \\ \mathcal{H}_{{HF}}^{{ \downarrow \uparrow }}(k) = (\mathcal{H}_{{HF}}^{{ \uparrow \downarrow }}(k)){\text{*}}, \\ \end{gathered} $$
(A.5)
$$\begin{gathered} {{\varepsilon }_{k}} = - 2t(\cos {{k}_{x}} + \cos {{k}_{y}}) + 4t'\cos {{k}_{x}}\cos {{k}_{y}}, \\ {{V}_{k}}(\alpha ) = \cos \alpha (\cos {{k}_{x}} + \cos {{k}_{y}}) \\ \, + i\sin \alpha (\cos {{k}_{x}} - \cos {{k}_{y}}), \\ \end{gathered} $$

where εk is the dispersion law for the energy of electrons on a square lattice with hops to the nearest and next-to-nearest sites and Vk(α) is the dispersion law for the superconducting OP with the symmetry specified by the value of phase α. Fluctuating potential (4) in this representation can be written as

$$\begin{gathered} \Delta \hat {\mathcal{U}}(\Delta ,\phi ,\tau ) = \frac{1}{N}\sum\limits_k^{} {\hat {c}_{k}^{\dag }(\tau )} \Delta \mathcal{U}(k){{{\hat {c}}}_{k}}(\tau ), \\ \Delta \mathcal{U}(k) = \left[ {\begin{array}{*{20}{c}} 0&{\Delta {{\mathcal{U}}^{{ \uparrow \downarrow }}}(k)} \\ {(\Delta {{\mathcal{U}}^{{ \uparrow \downarrow }}}(k)){\text{*}}}&0 \end{array}} \right], \\ \Delta {{\mathcal{U}}^{{ \uparrow \downarrow }}}(k) = 2V[\bar {\Delta }{{V}_{k}}(\alpha ) - \Delta (\phi ){{V}_{k}}(\phi )]. \\ \end{gathered} $$
(A.6)

The effective medium is described by Hamiltonian

$$\begin{gathered} {{{\hat {\mathcal{H}}}}_{{{\text{eff}}}}}(E) = {{{\hat {\mathcal{H}}}}_{{HF}}} + \hat {\Sigma }(E), \\ \hat {\Sigma }(E) = \frac{1}{N}\sum\limits_k^{} {\hat {c}_{k}^{\dag }{{\Sigma }_{k}}(E){{{\hat {c}}}_{k}},} \\ \end{gathered} $$
$${{\Sigma }_{k}}(E) = \left[ {\begin{array}{*{20}{c}} {{{\Sigma }^{ \uparrow }}(E)}&{\Sigma _{k}^{{ \uparrow \downarrow }}(E)} \\ {\Sigma _{k}^{{ \downarrow \uparrow }}(E)}&{{{\Sigma }^{ \downarrow }}(E)} \end{array}} \right],$$
(A.7)
$$\begin{gathered} \Sigma _{k}^{{ \uparrow \downarrow }}(E) = 2{{\Sigma }^{{ \uparrow \downarrow }}}(E){{V}_{k}}(\alpha ), \\ \Sigma _{k}^{{ \downarrow \uparrow }}(E) = 2{{\Sigma }^{{ \uparrow \downarrow }}}(E)V_{k}^{*}(\alpha ), \\ \end{gathered} $$

where Σk(E) is the self-energy part (A.1) in the representation of Nambu matrices (A.4). For considering the OP with the symmetry types under investigation, it is necessary that coefficient Σ↑↓(E) in nondiagonal matrix elements of self-energy part (A.7) be a real-valued function of energy, while diagonal elements Σ(E) and Σ(E) are generally complex-valued functions. Effective Green function (A.2) in the representation of Nambu matrices (A.4) can be expressed in terms of effective medium Hamiltonian \({{\hat {\mathcal{H}}}_{{{\text{eff}}}}}\)(E) (A.7):

$$\begin{gathered} {{F}_{k}}(E) = {{[E - {{\mathcal{H}}_{{{\text{eff}}}}}(k)]}^{{ - 1}}} = \left[ {\begin{array}{*{20}{c}} {F_{k}^{ \uparrow }(E)}&{F_{k}^{{ \uparrow \downarrow }}(E)} \\ {F_{k}^{{ \downarrow \uparrow }}(E)}&{F_{k}^{ \downarrow }(E)} \end{array}} \right], \\ F_{k}^{{ \uparrow ( \downarrow )}}(E) = \frac{{E \pm {{\varepsilon }_{k}} \mp \mu - {{\Sigma }^{{ \downarrow ( \uparrow )}}}(E)}}{{(E - E_{k}^{ + })(E - E_{k}^{ - })}}, \\ \end{gathered} $$
$$F_{k}^{{ \uparrow \downarrow ( \downarrow \uparrow )}}(E) = \frac{{\Sigma _{k}^{{ \uparrow \downarrow ( \downarrow \uparrow )}}(E) + \mathcal{H}_{{HF}}^{{ \uparrow \downarrow ( \downarrow \uparrow )}}(k)}}{{(E - E_{k}^{ + })(E - E_{k}^{ - })}},$$
(A.8)
$$\begin{gathered} E_{k}^{ \pm } = \frac{{{{\Sigma }^{ \uparrow }}(E) + {{\Sigma }^{ \downarrow }}(E)}}{2} \pm \left[ {{{{\left( {{{\varepsilon }_{k}} - \mu + \frac{{{{\Sigma }^{ \uparrow }}(E) + {{\Sigma }^{ \downarrow }}(E)}}{2}} \right)}}^{2}}} \right. \\ {{\left. {_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}}}} + \,{{\Sigma }^{ \uparrow }}(E){{\Sigma }^{ \downarrow }}(E) + \,{\text{|}}\Sigma _{k}^{{ \uparrow \downarrow }}(E) + \mathcal{H}_{{HF}}^{{ \uparrow \downarrow }}(k){{{\text{|}}}^{2}}} \right]}^{{1/2}}}. \\ \end{gathered} $$

The explicit expressions for the matrix elements of the effective Green function in the representation of the Nambu matrices are obtained as a result of the Fourier transformation (A.3):

$$\begin{gathered} F_{{j,j}}^{{ \uparrow \uparrow }}(E) = \frac{1}{N}\sum\limits_k^{} {F_{k}^{ \uparrow }(E} ), \\ F_{{j + \delta ,j + \delta }}^{{ \downarrow \downarrow }}(E) = \frac{1}{N}\sum\limits_k^{} {F_{k}^{ \downarrow }(E} ), \\ \end{gathered} $$
$$\begin{gathered} F_{{j,j + \delta }}^{{ \uparrow \downarrow }}(E) = \frac{1}{N}\sum\limits_k^{} {\exp [ik{{R}_{\delta }}]F_{k}^{{ \uparrow \downarrow }}(E)} \\ = \frac{1}{N}\sum\limits_k^{} {\cos (k{{R}_{\delta }})F_{k}^{{ \uparrow \downarrow }}(E),} \\ \end{gathered} $$
(A.9)
$$\begin{gathered} F_{{j + \delta ,j}}^{{ \downarrow \uparrow }}(E) = \frac{1}{N}\sum\limits_k^{} {\exp [ - ik{{R}_{\delta }}]F_{k}^{{ \downarrow \uparrow }}(E)} \\ = \frac{1}{N}\sum\limits_k^{} {\cos (k{{R}_{\delta }})F_{k}^{{ \downarrow \uparrow }}(E).} \\ \end{gathered} $$

For deriving this expressions, we have used properties Fk(E) = Fk(E), which follows from the inverse symmetry of the dispersion law of the electron energy and superconducting OP (A.5). The nondiagonal matrix elements of effective Green function (A.8) in the representation of Nambu matrices (A.4) possess the property \(F_{{{{k}_{y}},{{k}_{x}}}}^{{ \uparrow \downarrow ( \downarrow \uparrow )}}\)(E) = \(F_{{{{k}_{y}},{{k}_{x}}}}^{{ \downarrow \uparrow ( \uparrow \downarrow )}}\)(E), which is associated with the symmetry of superconducting OP (A.5). Consequently, the nondiagonal matrix elements of the effective Green function in the representation of Nambu matrices have property \(F_{{j,j \pm {{\delta }_{y}}}}^{{ \uparrow \downarrow }}\)(E) = \(F_{{j \pm {{\delta }_{x}},j}}^{{ \downarrow \uparrow }}\)(E). The explicit expressions for the matrix elements of the Green function with fluctuating potential Gj, δ(E) can be derived from Dyson equation (A.2) as follows:

$$\begin{gathered} G_{{j,j}}^{{ \uparrow \uparrow }}(E) = \frac{{F_{{j,j}}^{{ \uparrow \uparrow }}(E) + {{\Sigma }^{ \downarrow }}(E)\det [{{F}_{{j\delta }}}(E)]}}{{\det [1 - {{F}_{{j\delta }}}(E)(\Delta {{{\hat {\mathcal{U}}}}_{{j\delta }}} - {{\Sigma }_{{j\delta }}}(E))]}}, \\ G_{{j + \delta ,j + \delta }}^{{ \downarrow \downarrow }}(E) = \frac{{F_{{j + \delta ,j + \delta }}^{{ \downarrow \downarrow }}(E) + {{\Sigma }^{ \uparrow }}(E)\det [{{F}_{{j\delta }}}(E)]}}{{\det [1 - {{F}_{{j\delta }}}(E)(\Delta {{{\hat {\mathcal{U}}}}_{{j\delta }}} - {{\Sigma }_{{j\delta }}}(E))]}}, \\ G_{{j,j + \delta }}^{{ \uparrow \downarrow }}(E) = \frac{{F_{{j,j + \delta }}^{{ \uparrow \downarrow }}(E) + \Delta \Sigma _{{j,j + \delta }}^{{ \uparrow \downarrow }}(E)\det [{{F}_{{j\delta }}}(E)]}}{{\det [1 - {{F}_{{j\delta }}}(E)(\Delta {{\mathcal{U}}_{{j\delta }}} - {{\Sigma }_{{j\delta }}}(E))]}}, \\ G_{{j + \delta ,j}}^{{ \downarrow \uparrow }}(E) = \frac{{F_{{j + \delta ,j}}^{{ \downarrow \uparrow }}(E) + \Delta \Sigma _{{j + \delta ,j}}^{{ \downarrow \uparrow }}(E)\det [{{F}_{{j\delta }}}(E)]}}{{\det [1 - {{F}_{{j\delta }}}(E)(\Delta {{\mathcal{U}}_{{j\delta }}} - {{\Sigma }_{{j\delta }}}(E))]}}, \\ \end{gathered} $$
(A.10)

where

$$\begin{gathered} \Delta \Sigma _{{j,j + \delta }}^{{ \uparrow \downarrow }}(E) = \Delta \mathcal{U}_{{j,j + \delta }}^{{ \uparrow \downarrow }} - \Sigma _{{j,j + \delta }}^{{ \uparrow \downarrow }}(E), \\ \Delta \Sigma _{{j + \delta ,j}}^{{ \downarrow \uparrow }}(E) = \Delta \mathcal{U}_{{j + \delta ,j}}^{{ \downarrow \uparrow }} - \Sigma _{{j + \delta ,j}}^{{ \downarrow \uparrow }}(E), \\ \det [{{F}_{{j\delta }}}(E)] = F_{{j,j}}^{{ \uparrow \uparrow }}(E)F_{{j + \delta ,j + \delta }}^{{ \downarrow \downarrow }}(E) \\ \, - F_{{j,j + \delta }}^{{ \uparrow \downarrow }}(E)F_{{j + \delta ,j}}^{{ \downarrow \uparrow }}(E); \\ \end{gathered} $$
(A.11)
$$\begin{gathered} \det [1 - {{F}_{{j\delta }}}(E)(\Delta {{\mathcal{U}}_{{j\delta }}} - {{\Sigma }_{{j\delta }}}(E))] \\ = 1 + F_{{j,j}}^{ \uparrow }(E)\Sigma _{{j,j}}^{ \uparrow }(E) + F_{{j + \delta ,j + \delta }}^{ \downarrow }(E)\Sigma _{{j + \delta ,j + \delta }}^{ \downarrow }(E) \\ \, - F_{{j,j + \delta }}^{{ \uparrow \downarrow }}(E)\Delta \Sigma _{{j,j + \delta }}^{{ \downarrow \uparrow }}(E) - F_{{j + \delta ,j}}^{{ \downarrow \uparrow }}(E)\Delta \Sigma _{{j,j + \delta }}^{{ \uparrow \downarrow }}(E) \\ + \det [{{F}_{{j\delta }}}(E)]\det [\Delta {{\mathcal{U}}_{{j\delta }}} - {{\Sigma }_{{j\delta }}}(E)], \\ \det [\Delta {{\mathcal{U}}_{{j\delta }}} - {{\Sigma }_{{j\delta }}}(E)] = \Sigma _{{j,j}}^{ \uparrow }(E)\Sigma _{{j + \delta ,j + \delta }}^{ \downarrow }(E) \\ \, - \Delta \Sigma _{{j,j + \delta }}^{{ \uparrow \downarrow }}(E)\Delta \Sigma _{{j + \delta ,j}}^{{ \downarrow \uparrow }}(E). \\ \end{gathered} $$
(A.12)

It can easily be verified that Δ\(\mathcal{U}_{{j,j \pm {{\delta }_{y}}}}^{{ \uparrow \downarrow }}\) = Δ\(\mathcal{U}_{{j \pm {{\delta }_{x}},j}}^{{ \downarrow \uparrow }}\) and \(\Sigma _{{j,j \pm {{\delta }_{y}}}}^{{ \uparrow \downarrow }}\)(E) = \(\Sigma _{{j \pm {{\delta }_{x}},j}}^{{ \downarrow \uparrow }}\)(E). As noted above, the nondiagonal matrix elements of the effective Green function possess the same property. Thus, it can be seen from expression (A.10) that the nondiagonal matrix elements of the Green function with the fluctuating potential also possess this property, and the determinants of matrices (A.12) are independent of indices j as well as of their nearest neighbors δ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groshev, A.G., Arzhnikov, A.K. Self-Consistent Consideration of Fluctuations in Singlet Superconducting Phases with s and d Symmetry. J. Exp. Theor. Phys. 130, 247–257 (2020). https://doi.org/10.1134/S1063776119120173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119120173

Navigation