Skip to main content
Log in

Gapless Chiral Superconducting (d + id)-Wave Phase in Strongly Correlated Layered Material with a Triangular Lattice

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that interlayer electron tunneling in the quasi-two-dimensional ensemble of Hubbard fermions leads to the realization of the gapless superconducting phase with the chiral (d + id)-wave order parameter symmetry, not for a single value of sodium ion concentration, but in a wide range of concentrations. Precisely this situation corresponds to experimental data on the layered sodium cobaltite intercalated by water (NaxCoO2yH2O). Intra-atomic electron repulsion that determines the strong electron correlation regime leads to the representation of Hubbard fermions, the interaction of which ensures Cooper instability. Intersite intralayer interactions between fermions considerably affect the positions of nodal points of the chiral order parameter and change the critical concentration at which a topological transition occurs in the 2D system of Hubbard fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. R. S. Gekht, Sov. Phys. Usp. 32, 871 (1989).

    Article  ADS  Google Scholar 

  2. D. I. Golosov and A. V. Chubukov, JETP Lett. 50, 451 (1989).

    ADS  Google Scholar 

  3. A. V. Chubukov and D. I. Golosov, J. Phys.: Condens. Matter 3, 69 (1991).

    ADS  Google Scholar 

  4. L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, A. Micheler, N. Buttgen, A. Ya. Shapiro, and L. N. Demianets, Phys. Rev. 74, 024412 (2006).

    Article  Google Scholar 

  5. A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, A. Ya. Shapiro, and M. E. Zhitomirsky, Phys. Rev. Lett. 119, 047204 (2017).

    Article  ADS  Google Scholar 

  6. T. A. Soldatov, A. I. Smirnov, K. Y. Povarov, M. Halg, W. E. A. Lorenz, and A. Zheludev, Phys. Rev. B 98, 144440 (2018).

    Article  ADS  Google Scholar 

  7. D. M. Dzebisashvili and A. A. Khudaiberdyev, JETP Lett. 108, 189 (2018).

    Article  ADS  Google Scholar 

  8. O. A. Starykh, Rep. Progr. Phys. 78, 052592 (2015).

    Article  Google Scholar 

  9. A. I. Smirnov, Phys. Usp. 59, 564 (2016).

    Article  ADS  Google Scholar 

  10. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature (London, U.K.) 422, 53 (2003).

    Article  ADS  Google Scholar 

  11. S. Zhou and Z. Wang, Phys. Rev. Lett. 100, 217002 (2008).

    Article  ADS  Google Scholar 

  12. Y.-M. Lu and Z. Wang, Phys. Rev. Lett. 110, 096403 (2013).

    Article  ADS  Google Scholar 

  13. V. V. Val’kov, A. O. Zlotnikov, and M. S. Shustin, J. Magn. Magn. Mater. 459, 112 (2018).

    Article  ADS  Google Scholar 

  14. V. V. Val’kov and A. O. Zlotnikov, JETP Lett. 109, 736 (2019).

    Article  ADS  Google Scholar 

  15. V. V. Val’kov, V. A. Mitskan, A. O. Zlotnikov, M. S. Shustin, and S. V. Aksenov, JETP Lett. 110, 140 (2019).

    Article  ADS  Google Scholar 

  16. S. Feng, Y. Lan, H. Zhao, L. Kuang, L. Qin, and X. Ma, Int. J. Mod. Phys. B 29, 1530009 (2015).

    Article  ADS  Google Scholar 

  17. X. Ma, L. Qin, H. Zhao, Y. Lan, and S. Feng, J. Low Temp. Phys. 183, 329 (2016).

    Article  ADS  Google Scholar 

  18. L. Qin, X. Ma, L. Kuang, J. Qon, and S. Feng, J. Low Temp. Phys. 181, 112 (2015).

    Article  ADS  Google Scholar 

  19. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    ADS  Google Scholar 

  20. M. Ye and A. Chubukov, Phys. Rev. B 100, 035135 (2019).

    Article  ADS  Google Scholar 

  21. K. S. Chen, Z. Y. Meng, U. Yu, S. Yang, M. Jarrell, and J. Moreno, Phys. Rev. B 88, 041103(R) (2013).

  22. G.-Q. Zheng et al., J. Phys.: Condens. Matter 18, L63 (2006).

    ADS  Google Scholar 

  23. A. Kanigel et al., Phys. Rev. Lett. 92, 257007 (2004).

    Article  ADS  Google Scholar 

  24. H. D. Yang et al., Phys. Rev. B 71, 020504R (2005).

    Article  ADS  Google Scholar 

  25. G.-Q. Zheng et al., Phys. Rev. B 73, 180503R (2006).

    Article  ADS  Google Scholar 

  26. G. Baskaran, Phys. Rev. Lett. 91, 097003 (2003).

    Article  ADS  Google Scholar 

  27. B. Kumar and B. S. Shastry, Phys. Rev. B 68, 104508 (2005).

    Article  ADS  Google Scholar 

  28. M. Ogata, J. Phys. Soc. Jpn. 72, 1839 (2003).

    Article  ADS  Google Scholar 

  29. K. S. Chen, Z. Y. Meng, U. Yu, S. Yang, M. Jarrell, and J. Moreno, Phys. Rev. B 88, 041103 (2013).

    Article  ADS  Google Scholar 

  30. Y. Yanase, M. Mochizuki, and M. Ogata, J. Phys. Soc. Jpn. 74, 430 (2005).

    Article  ADS  Google Scholar 

  31. M. Ogata, J. Phys.: Condens. Matter 19, 145282 (2007).

    ADS  Google Scholar 

  32. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).

    Article  ADS  Google Scholar 

  33. N. M. Plakida, High-Temperature Superconductivity (Springer, Berlin, 1995).

    Book  Google Scholar 

  34. Yu. A. Izyumov, Phys. Usp. 40, 445 (1997).

    Article  ADS  Google Scholar 

  35. V. V. Val’kov, T. A. Val’kova, D. M. Dzebisashvili, and S. G. Ovchinnikov, JETP Lett. 75, 378 (2002).

    Article  ADS  Google Scholar 

  36. V. V. Val’kov, T. A. Val’kova, and V. A. Mitskan, JETP Lett. 102, 361 (2015).

    Article  ADS  Google Scholar 

  37. S. P. Shubin and S. V. Vonsovsky, Proc. R. Soc. London, Ser. A 145, 159 (1934).

    Article  ADS  Google Scholar 

  38. S. P. Shubin and S. V. Vonsovsky, Phys. Z. Sowjetunion 7, 292 (1935).

  39. S. P. Shubin and S. V. Vonsovsky, Phys. Z. Sowjetunion 10, 348 (1936).

  40. N. N. Bogolyubov, Selected Works, in 3 Volumes (Naukova Dumka, Kiev, 1970), Vol. 2 [in Russian].

    MATH  Google Scholar 

  41. R. O. Zaitsev, Sov. Phys. JETP 41, 100 (1975);

    ADS  Google Scholar 

  42. Sov. Phys. JETP 43, 574 (1976).

  43. R. O. Zaitsev, Diagram Methods in the Theory of Superconductivity and Ferromagnetism (URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  44. V. V. Val’kov and A. A. Golovnya, J. Exp. Theor. Phys. 107, 996 (2008).

    Article  ADS  Google Scholar 

  45. L. P. Gor’kov, Sov. Phys. JETP 7, 505 (1958).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 19-02-00348 and 18-42-240014), the Administration of the Krasnoyarsk Kray, the Krasnoyarsk Kray Science Foundation within research project “Single-orbital Effective Model of Ensemble of Spin-Polaron Quasiparticles in the Problem of Description of the Intermediate State and Pseudogap Behavior of Cuprate Superconductors” (project no. 18-42-240014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Val’kov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Val’kov, V.V., Val’kova, T.A. & Mitskan, V.A. Gapless Chiral Superconducting (d + id)-Wave Phase in Strongly Correlated Layered Material with a Triangular Lattice. J. Exp. Theor. Phys. 130, 235–246 (2020). https://doi.org/10.1134/S1063776120010197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120010197

Navigation