Skip to main content
Log in

Magnetic Phase Transitions to an Incommensurate Structure in LiMn2O4 Compound

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Possible second-order magnetic phase transitions to the incommensurate magnetic structure in the orthorhombic phase of LiMn2O4 compound have been investigated. It is shown that “weak Lifshitz condition” holds for this compound (i.e., Lifshits invariants are immaterial in all transitions being considered), and only the incommensurate phase, in which the wavevector near the transition point varies continuously with temperature and pressure, can be formed. A transition is considered both in the exchange approximation occurring in three irreducible representations forming an exchange multiplet as well as in one and two irreducible representations. Expressions have been derived for the mean density of the magnetic moment emerging because of such transitions. It is found that structures of the types of a longitudinal spin wave, a transverse spin wave with polarization along the crystallographic axes perpendicular to the wavevector of the structure, as well as certain superpositions of these waves can be formed in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Tomeno, Y. Kasuya, and Y. Tsunoda, Phys. Rev. B 64, 094422 (2001).

    Article  ADS  Google Scholar 

  2. R.A. Huggins, Advanced Batteries. Materials Science Aspects (Springer, New York, 2009).

  3. A. Yamada and M. Tanaka, Mater. Res. Bull. 30, 715 (1995).

    Article  Google Scholar 

  4. Y. Shimakawa, T. Numata, and J. Tabuchi, J. Solid State Chem. 131, 138 (1997).

    Article  ADS  Google Scholar 

  5. J. Rodriguez-Carvajal, G. Rousse, C. Masquilier, et al., Phys. Rev. Lett. 81, 4460 (1997).

    Google Scholar 

  6. H. Hagakawa, T. Takada, H. Enoki, et al., J. Mater. Sci. Lett. 17, 811 (1998).

    Article  Google Scholar 

  7. Yu. G. Chukalkin, A. E. Teplykh, A. N. Pirogov, and D. G. Kellerman, Phys. Solid State 52, 2545 (2010).

    Article  ADS  Google Scholar 

  8. P. Endres, B. Fuch, S. Kemmber-Sade, et al., Solid State Ion. 89, 221 (1996).

    Article  Google Scholar 

  9. Y. Jang, F. C. Chou, Y. Cheng, et al., Appl. Phys. Lett. 74, 2504 (1999).

    Article  ADS  Google Scholar 

  10. J. Sugiyama, T. Hioki, S. Noda, et al., J. Phys. Soc. Jpn. 66, 1187 (1997).

    Article  ADS  Google Scholar 

  11. Y. Oohara, J. Sugiyama, and M. Kontini, J. Phys. Soc. Jpn. 68, 242 (1999).

    Article  ADS  Google Scholar 

  12. A. S. Wills, N. P. Raju, and J. E. Greedan, Chem. Mater. 11, 1510 (1999).

    Article  Google Scholar 

  13. J. Rodriguez-Carvajal, Mater. Sci. Forum 378381, 268 (2001).

  14. V. A. Golovko and A. P. Levanyuk, Sov. Phys. Solid State 23, 1844 (1981).

    Google Scholar 

  15. R. M. Hornreich, M. Luban, and S. Shtricman, Phys. Rev. Lett. 35, 1678 (1975).

    Article  ADS  Google Scholar 

  16. A. Michelson, Phys. Rev. B 16, 577 (1977).

    Article  ADS  Google Scholar 

  17. A. Michelson, Phys. Rev. B 16, 585 (1977).

    Article  ADS  Google Scholar 

  18. A. Michelson, Phys. Rev. B 18, 459 (1978).

    Article  ADS  Google Scholar 

  19. O. V. Kovalev, Sov. Phys. Solid State 7, 77 (1965).

    Google Scholar 

  20. Yu. A. Izyumov, Neutron Diffraction on Long-Period Structures (Energoatomizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  21. I. E. Dzyaloshinskii, Sov. Phys. JETP 20, 665 (1964).

    Google Scholar 

  22. D. A. Bruce, J. Phys. C 13, 4615 (1980).

    Article  ADS  Google Scholar 

  23. P. Bak and J. von Boehm, Phys. Rev. B 21, 5297 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  24. V. A. Golovko and A. P. Levanyuk, Sov. Phys. Solid State 23, 1850 (1980).

    Google Scholar 

  25. V. V. Men’shenin, J. Exp. Theor. Phys. 108, 236 (2009).

    Article  ADS  Google Scholar 

  26. I. E. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964).

    Google Scholar 

  27. O. V. Kovalev, Sov. Phys. Solid State 5, 2309 (1963).

    Google Scholar 

  28. O. V. Kovalev, Irreducible and Induced Representations and Co-Representations of Fedorov’s Groups (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  29. G. L. Bir and G. E. Pikus, Symmetry and Stain-Induced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1975).

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

  31. A. N. Vasil’ev, Quantum Field Renormalization Group in the Theory of Critical Behavior and Stochastic Dynamics (PIYaF, St. Petersburg, 1998) [in Russian].

  32. Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutronography of Magnets (Atomizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  33. K. G. Wilson and A. M. Fisher, Phys. Rev. Lett. 28, 240 (1972).

    Article  ADS  Google Scholar 

  34. V. V. Men’shenin, J. Exp. Theor. Phys. 120, 1019 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Menshenin.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menshenin, V.V. Magnetic Phase Transitions to an Incommensurate Structure in LiMn2O4 Compound. J. Exp. Theor. Phys. 130, 108–116 (2020). https://doi.org/10.1134/S1063776119120069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119120069

Navigation