Skip to main content
Log in

Lower Oligocene Calc-Alkaline Spessartitic Lamprophyres from Central Iran (East of Anarak Area); an Evidence from the Eastern Branch of Neotethys Subduction-Related Mantle Enrichment

  • Published:
Geotectonics Aims and scope

Abstract

The Lower Oligocene Kal-e-kafi (East of Anarak, Central Iran) lamprophyres occur as stocks and dikes, which cross-cut the Eocene volcanic and Cretaceous sedimentary rocks. The predominant minerals of these lamprophyres are hornblende (magnesiohastingsite) and clinopyroxene (diopside) phenocrysts set in a fine- to medium-grained matrix of the same minerals plus plagioclase (labradorite to bytownite), sanidine, apatite, and magnetite. Secondary minerals are chlorite, magnetite, calcite, and epidote. Petrography, mineral chemistry, and whole rock compositions classify these rocks as calc-alkaline lamprophyre, in general, and spessartite in particular. These samples have intermediate compositions (SiO2 ~ 58 wt %). The chondrite-normalized REE patterns and primitive mantle-normalized multi-element spider diagram of Kal-e-kafi lamprophyres are remarkably parallel and suggest that these dikes and stocks were derived from the same parental magma and underwent similar melt extraction. These rocks are enriched in alkalies, large-ion lithophile elements (e.g., Rb, Ba, K), and light rare-earth elements (e.g., La, Ce), and exhibit moderate to high fractionation in LREE patterns, with an average La/Lu ratio of 112. The large amount of hydrous fluids coming from the subducted slab rather than sediments caused to the enrichment and metasomatism of subcontinental lithospheric mantle source. Crustal contamination and assimilation of host rocks also played role in the genesis of these lamprophyres. Geochemical characteristics of the studied rocks suggest that parental magma have been derived from partial melting of a metasomatized amphibole-bearing spinel lherzolite of lithospheric mantle, which was previously modified by dehydration of a subducting slab. Subduction of oceanic crust around the Central-East Iranian Microcontinent (CEIM) is the most reasonable mechanism to explain enrichment in volatiles of the mantle, and the lamprophyric magmatism of the Kal-e-kafi area in Lower Oligocene times. Several tectonomagmatic discrimination diagrams indicate that the Kal-e-kafi lamprophyres occurred during postcollisional period of lithospheric extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. Aghazadeh, D. Prelević, Z. Badrzadeh, E. Braschi, P. V. D. Bogaard, and S. Conticelli, “Geochemistry, Sr‒Nd‒Pb isotopes and geochronology of amphibole- and mica-bearing lamprophyres in northwestern Iran: Implications for mantle wedge heterogeneity in a palaeo-subduction zone,” Lithos 216‒217, 352‒369 (2015).

    Google Scholar 

  2. J. Ahmadian, M. Hasckke, I. McDonald, M. Regelous, M. R. Ghorbani, M. H. Emami, and M. Murata, “High magmatic flux during Alpine-Himalayan collision: Constraints from the Kal-e-kafi complex, central Iran,” Geol. Soc. Am. Bull. 121(5), 857‒868 (2009).

    Google Scholar 

  3. J. Ahmadian, F. Sarjoughian, D. Lentz, A. Esna-Ashari, M. Murata, and H. Ozawa, “Eocene K-rich adakitic rocks in the Central Iran: Implications for evaluating its Cu–Au–Mo metallogenic potential,” Ore Geol. Rev. 72, 323‒342 (2016).

    Google Scholar 

  4. L. Aistov, B. Melnikov, B. Krivyakin, L. Morozov, V. Kiristaev, and E. Romanko, Geology of the Khur Area (Central Iran), No. 20 of Geol. Surv. Iran, Rep. TE (1984).

  5. M. Alavi, “Sedimentary and structural characteristics of the Paleo-Tethys remnants in Northeastern Iran,” Geol. Soc. Am. Bull. 103, 983‒992 (1991).

    Google Scholar 

  6. J. L. Anderson, and D. R. Smith, “The effects of temperature and oxygen fugacity on the Al-in-hornblende barometer,” Am. Mineral. 80, 549‒559 (1995).

    Google Scholar 

  7. N. Bahadoran, MS Thesis (Isfahan, Iran, 2007).

  8. F. Barberi, H. Bizouard, and J. Varet, “Nature of the clinopyroxene and iron enrichment in alkalic and transitional basalts magmas,” Contrib. Mineral. Petrol. 33, 93‒107 (1971).

    Google Scholar 

  9. F. Bayat and G. Torabi, “Alkaline lamprophyric province of Central Iran,” Island Arc 20, 386‒400 (2011).

    Google Scholar 

  10. M. Coltorti, C. Bonadiman, B. Faccini, M. O. Grégoire, S. Y. Reilly, and W. Powell, “Amphiboles from suprasubduction and intraplate lithospheric mantle,” Lithos 99, 68‒84 (2007).

    Google Scholar 

  11. P. R. Castillo, “Adakite petrogenesis,” Lithos 134–135, 304‒316 (2012).

    Google Scholar 

  12. M. Davoudzadeh, “Geology of Iran,” in Encyclopedia of Asian and European Regional Geology, Ed. by E. M. Moores, and R. W. Fairbridge (Chapman & Hall, London, 1997), pp. 384‒405.

    Google Scholar 

  13. W. A. Deer, R.A. Howie, and J. Zussman, An Introduction to the Rock-Forming Minerals, 2nd ed. (Longman, London, 1996).

    Google Scholar 

  14. M. J. Defant and M. S. Drummond, “Derivation of some modern arc magmas by melting of young subducted lithosphere,” Nature 34, 662‒665 (1990).

    Google Scholar 

  15. M. J. Defant and P. Kepezhinskas, “Evidence suggests slab melting in arc magmas,” EOS, Trans., Am. Geophys. Union 82 (6), 62‒70 (2001).

    Google Scholar 

  16. S. Duggen, K. Hoernle, P. Bogaard, and D. Garbe-Schonberg, “Post-collisional transition from subduction-to intraplate type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere,” J. Petrol. 46, 1155‒1201 (2005).

    Google Scholar 

  17. S. M. Elardo and C. K. Shearer, “Magma chamber dynamics recorded by oscillatory zoning in pyroxene and olivine phenocrysts in basaltic lunar meteorite, Northwest Africa 032,” Am. Mineral. 99, 355‒368 (2014).

    Google Scholar 

  18. O. Femenias, J. C. Mercier, C. Nkono, H. Diot, T. Berza, M. Tatu, and D. Demaiffe, “Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru Dike Swarm (Southern Carpathians, Romania),” Am. Mineral. 91, 73‒81 (2006).

    Google Scholar 

  19. J. G. Fitton, D. James, P. D. Kempton, D. S. Ormerod, and W. P. Leeman, “The role of lithospheric mantle in the generation of Late Cenozoic basic magmas in the Western United States,” in Oceanic and Continental Lithosphere; Similarities and Differences, Spec. Vol. 1 of J. Petrol., Ed. by M. A. Menzies and K. G. Cox (Clarendon Press, Oxford, 1988), pp. 331‒349.

  20. D. Francis and W. Minarik, “Aluminum-dependent trace element partitioning in clinopyroxene,” Contrib. Mineral. Petrol. 156, 439‒451 (2008).

    Google Scholar 

  21. T. Furman and D. Graham, “Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province,” Lithos 48, 237‒262 (1999).

    Google Scholar 

  22. A. S. Gibson, R. N. Thompson, A. P. Dickin, and O. H. Leonardos, “High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood-basalt genesis,” Earth Planet. Sci. Lett. 136, 149‒165 (1995).

    Google Scholar 

  23. R. Gill, Igneous Rocks and Processes: A Practical Guide (Wiley-Blackwell, London, 2010).

    Google Scholar 

  24. M. Grégoire, J. P. Lorand, S. Y. Oreilly, and J. Y. Cottin, “Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: Implications from the oceanic mantle budget of high-field strength elements,” Geochim. Cosmochim. Acta 64, 673‒94 (2000).

    Google Scholar 

  25. F. Gülmez, S. C. Genç, D. Prelević, O. Tüysüz, Z. Karacik, M. F. Michael, and Z. Billor, “Ultrapotassic volcanism from the waning stage of the Neotethyan subduction: A key study from the Izmir–Ankara–Erzincan Suture Belt, Central Northern Turkey,” J. Petrol. 57, 561‒593 (2016).

    Google Scholar 

  26. F. Guo, W. M. Fan, Y. J. Wang, and M. Zhang, “Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: Implications for enrichment processes beneath continental collision belt,” Lithos 78, 291‒305 (2004).

    Google Scholar 

  27. F. C. Hawthorne, R. Oberti, G. E. Harlow, W. V. Maresch, R. F. Martin, J. C. Schumacher, and M. D. Welch, “Nomenclature of the amphibole super group,” Am. Mineral. 97, 2031‒2048 (2012).

    Google Scholar 

  28. T. Holland and J. Blundy, “Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry,” Contrib. Mineral. Petrol. 116, 433‒447 (1994).

    Google Scholar 

  29. T. Holten, B. Jamtveit, and P. Meakin, “Noise and oscillatory zoning of minerals,” Geochim. Cosmochim. Acta 64, 1893‒1904 (2000).

    Google Scholar 

  30. T. N. Irvine and W. R. A. Bargar, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8, 523-548 (1971).

    Google Scholar 

  31. A. L. Jaques, R. A. Creaser, J. Ferguson, and C. B. Smith, “A review of the alkaline rocks of Australia,” Trans. Geol. Soc. S. Afr. 88, 311‒334 (1985).

    Google Scholar 

  32. O. Karsli, A. Dokuz, M. Kaliwoda, I. Uysal, F. Aydin, R. Kandemir, and K. T. Fehr, “Geochemical fingerprints of Late Triassic calc-alkaline lamprophyres from the Eastern Pontides, NE Turkey: A key to understanding lamprophyre formation in a subduction-related environment,” Lithos 196–197, 181‒197 (2014).

    Google Scholar 

  33. B. E. Leake, “Nomenclature of amphiboles,” Am. Mineral. 63, 1023‒1052 (1978).

    Google Scholar 

  34. B. E. Leake, A. R. Woolley, C. E. S. Arps, W. D. Birch, M. C. Gilbert, J. D. Grice, F. C. Hawthorne, A. Kato, H. J. Kisch, V. G. Krivovichev, K. Linthout, J. Laird, J. A. Mandarino, W. V. Maresch, E. H. Nickel, et al., “Nomenclature of amphiboles: Report of the Subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names,” Can. Mineral. 35, 219‒246 (1997).

    Google Scholar 

  35. M. J. Le Bas, “Igneous rock classification revisited 4: Lamprophyres,” Geol. Today. 23 (2), 167‒168 (2007).

    Google Scholar 

  36. M. J. Le Bas, R. W. Le Maitre, and A. R. Woolley, “The construction of the total alkali–silica chemical classification of volcanic rocks,” Mineral. Petrol. 46, 1‒22 (1992).

    Google Scholar 

  37. C. A. Lee, W. P. Leeman, D. Canil, and Z. X. Li, “Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions,” J. Petrol. 46, 2313‒2336 (2005).

    Google Scholar 

  38. R. W. Le Maitre, Igneous Rocks: A Classification and Glossary of Terms, 2nd ed. (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  39. F. P. Lesnov, Rare Earth Elements in Ultramafic and Mafic Rocks and Their Minerals: Main Types of Rocks, Rock-Forming Minerals (CRC Press/Balkema, London, 2010).

    Google Scholar 

  40. D. H. Lindsley, “Pyroxene thermometry,” Am. Mineral. 68, 477‒493 (1983).

    Google Scholar 

  41. P. D. Maniar and P. M. Piccoli, “Tectonic discrimination of granitoids,” Geol. Soc. Am. Bull. 101, 635‒643 (1989).

    Google Scholar 

  42. L. Ma, S. Y. Jiang, A. W. Hofmann, B. Z. Dai, M.  L. Hou, K. D. Zhao, L. H. Chen, J. W. Li, and Y.  H. Jiang, “Lithospheric and asthenospheric source of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?,” Geochim. Cosmochim. Acta 124, 250‒271 (2014).

    Google Scholar 

  43. D. Martin, R. W. Griffiths, and I. H. Campbell, “Compositional and thermal convection in magma chambers,” Contrib. Mineral. Petrol. 96, 465‒475 (1987).

    Google Scholar 

  44. M. Mattei, F. Cifelli, G. Muttoni, and H. Rashid, “Post Cimmerian (Jurassic–Cenozoic) paleogeography and vertical axis tectonic rotations of Central Iran and the Alborz Mountains,” J. Asian Earth Sci. 102, 92‒101 (2015).

    Google Scholar 

  45. W. F. McDonough, “Constraints on the composition of the continental lithospheric mantle,” Earth Planet. Sci. Lett. 101, 1‒18 (1990).

    Google Scholar 

  46. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223‒253 (1995).

    Google Scholar 

  47. E. A. K. Middlemost, “Iron oxidation ratios, norms and the classification of volcanic rocks,” Chem. Geology. 77, 19‒26 (1989).

    Google Scholar 

  48. S. Mollo, J. D. Blundy, G. Iezzi, P. Scarlato, and A. Langone, “The partitioning of trace elements between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth,” Contrib. Mineral. Petrol. 166, 1633‒1654 (2013).

    Google Scholar 

  49. N. Morimoto, J. Fabrise, A. Ferguson, I. V. Ginzburg, M. Ross, F. A. Seifert, J. Zussman, K. Akoi, and G. Gottardi, “Nomenclature of pyroxenes,” Mineral. Mag. 52, 535‒550 (1988).

    Google Scholar 

  50. D. Muller and D. Groves, Potassic Igneous Rocks and Associated Gold–Copper Mineralization (Springer, Berlin, 2016), 4th ed.

    Google Scholar 

  51. D. Muller, E. F. Stampfli, and W. R. Taylor, “Shoshonitic and alkaline lamprophyres with elevated Au and PGE concentrations from the Kreuzeck mountains, eastern Alps, Austria,” Mineral. Petrol. 46, 23‒42 (1992).

    Google Scholar 

  52. D. Muller, B. J. Morris, and M. G. Farrand, “Potassic alkaline lamprophyres with affinities to lamproites from the Karinya Syncline, South Australia,” Lithos 30, 123–137 (1993).

    Google Scholar 

  53. J. A. Pearce, “Trace element characteristics of lavas from destructive plate boundaries,” in Andesites: Orogenic Andesites and Related Rocks, Ed. by R. S. Thorpe (Wiley, Chichester, U. K., 1982), pp. 525‒548.

    Google Scholar 

  54. L. L. Perchuk, L. Y. Aranovich, K. K. Podlesskii, I.  V. Lavrent’eva, V. Y. Gerasimov, V. V. Fed’kin, V. I. Kitsul, L. P. Karsakov, and N. V. Berdnikov, “Precambrian granulites of the Aldan shield, eastern Siberia, USSR,” J. Metamorph. Geol. 3, 265‒310 (1985).

    Google Scholar 

  55. D. Prelević, C. Akal, S. F. Foley, R. L. Romer, A. Stracke, and P. V. D. Bogaard, “Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: The case of southwestern Anatolia, Turkey,” J. Petrol. 53, 1019‒1055 (2012).

    Google Scholar 

  56. E. P. Reguir, A. R. Chakhmouradian, L. Pisiak, N.  M. Halden, P. Yang, C. Xu, J. kynicky, and C.  G. Coueslan, “Trace-element composition and zoning in clinopyroxene- and amphibole-group minerals: Implications for element partitioning and evolution of carbonatites,” Lithos 128, 27‒45 (2012).

    Google Scholar 

  57. D. Remizov and V. Pease, “The Dzela complex, Polar Urals, Russia: A Neoproterozoic island arc,” in The Neoproterozoic Timanide Orogen of Eastern Baltica, Vol. 30 of Geol. Soc. London, Mem., Ed. by D. G. Gee and V. Pease (London, 2004), pp. 107‒123.

  58. F. Ridolfi, A. Renzulli, and M. Puerini, “Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes,” Contrib. Mineral. Petrol. 160, 45‒66 (2010).

    Google Scholar 

  59. K. Righter, S. Sutton, L. Danielson, K. Pando, G.  Schmidt, H. Yang, S. Berthet, M. Newville, Y. Choi, R. T. Downs, and V. Malavergne, “The effect of ƒO2 on the partitioning and valence of V and Cr in garnet/melt pairs and the relation to terrestrial mantle V and Cr content,” Am. Mineral. 96, 1278‒1290 (2011).

    Google Scholar 

  60. N. M. S. Rock, “The nature and origin of lamprophyres: An overview,” in Alkaline Igneous Rocks, Vol. 30 of Geol. Soc. London, Spec. Publ., Ed. by J. G. Fitton and B. G. J. Upton (London, 1987), pp. 191‒226.

  61. N. M. S. Rock, Lamprophyres (Blackie & Sons, Glasgow, 1991).

    Google Scholar 

  62. H. R. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation (John Wiley & Sons, New York, 1993).

    Google Scholar 

  63. R. L. Rudnick and S. Gao, “Composition of the continental crust,” in Treatise on Geochemistry, Vol. 3: The Crust, Ed. by R. L. Rudnick, 2nd ed. (Elsevier, New York, 2014), pp. 1‒51.

  64. T. Seifert, Metallogeny and Petrogenesis of Lamprophyres in the Mid-European Variscides: Post-Collisional Magmatism and Its Relationship to Late-Variscan Ore Forming Processes in the Erzgebirge (Bohemian Massif) (IOS Press BV, Amsterdam, 2008).

    Google Scholar 

  65. M. Shore and A. D. Fowler, “Oscillatory zoning in minerals: A common phenomenon,” Can. Mineral. 34, 1111‒1126 (1996).

    Google Scholar 

  66. A. Soesoo, “A multivariate statistical analysis of clinopyroxene compositions: Empirical coordinates for the crystallization and PT-estimations,” GFF. 119, 55‒60 (1997).

    Google Scholar 

  67. R. K. Srivastava and N. V. Rao, “Petrology, geochemistry and tectonic significance of Palaeoproterozoic alkaline lamprophyres from the Jungel Valley, Mahakoshal supracrustal belt, Central India,” Mineral. Petrol. 89, 189‒215 (2007).

    Google Scholar 

  68. B. Su, PhD Thesis (Beijing, 2014).

  69. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Vol. 42 of Geol. Soc. London, Spec. Publ., Ed. by A. D. Saunders and M. J. Norry (London, 1989), pp. 313–345.

  70. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, U. K., 1985).

    Google Scholar 

  71. Gh. Torabi, “Late Permian lamprophyric magmatism in North-East of Isfahan Province, Iran: A mark of rifting in the Gondwanaland,” C. R. Geosci. 341, 85–94 (2009).

    Google Scholar 

  72. Gh. Torabi, “Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): Evidence of Central-East Iranian microcontinent confining oceanic crust subduction,” Island Arc 19, 277‒291 (2010).

    Google Scholar 

  73. Gh. Torabi, “Middle Eocene volcanic shoshonites from western margin of Central-East Iranian Microcontinent (CEIM), a mark of previously subducted CEIM-confining oceanic crust,” Petrology 19, 675‒689 (2011).

    Google Scholar 

  74. Gh. Torabi and S. Arai, “Back-arc Paleo-Tethys related blueschist from Central Iran, south of Chupanan, Isfahan Province,” Petrology 21, 1‒15 (2013).

    Google Scholar 

  75. Gh. Torabi and O. Hemati, “Alkaline basalt from the Central Iran, a mark of previously subducted Paleo-Tethys oceanic crust,” Petrology 19, 690‒704 (2011).

    Google Scholar 

  76. Gh. Torabi, N. Shirdashtzadeh, S. Arai, and J. Koepke, “Paleozoic and Mesozoic ophiolites of Central Iran: Study of amphibolites from Naein, Ashin, Jandaq and Posht-e-Badam ophiolites,” Neues Jahrb. Geol. Palaeontol., Abh. 262, 227‒240 (2011).

    Google Scholar 

  77. D. L. Whitney and B. W. Evans, “Abbreviations for names of rock-forming minerals,” Am. Mineral. 95, 185‒187 (2010).

    Google Scholar 

  78. J. A. Winchester and P. A. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chem. Geol. 20, 325‒343 (1977).

    Google Scholar 

  79. J. D. Winter, Principles of Igneous and Metamorphic Petrology, 2nd ed. (Pearson Education, New York, 2014).

    Google Scholar 

  80. A. R. Woolley, S. C. Bergman, A. D. Edgar, M. J. Le Bas, R. H. Mitchell, N. M. S. Rock, and B. H. Scott-Smith, “Classification of lamprophyres, lamproites, kimberlites and the kalsilite mellitic and leucitic rocks,” Can. Mineral. 34, 175‒186 (1996).

    Google Scholar 

  81. T. Wulaningsih, H. Humaida, A. Harijoko, and K. Watanabe, “Major element and rare earth elements investigation of Merapi Volcano, Central Java, Indonesia,” Proc. Earth Planet. Sci. 6, 202‒211 (2013).

    Google Scholar 

  82. A. Zanchi, S. Zanchetta, E. Garzanti, M. Balini, F. Berra, M. Mattei, and G. Muttoni, “The Cimmerian evolution of the Nakhlak-Anarak area, Central Iran, and its bearing for the reconstruction of the history of the Eurasian margin,” in South Caspian to Central Iran Basins, Vol. 312 of Geol. Soc. London, Spec. Publ., Ed. by M.-F. Brunet, M. Wilmsen, and J. W. Granath (London, 2009), pp. 261‒286.

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. Andrey A. Shchipanskii for constructive comments improved the manuscript.

Funding

The authors thank the University of Isfahan (Iran) and Kanazawa University (Japan) for financial support and laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gh. Torabi.

Additional information

Reviewer: A.A. Shchipanskii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, G.H., Torabi, G., Arai, S. et al. Lower Oligocene Calc-Alkaline Spessartitic Lamprophyres from Central Iran (East of Anarak Area); an Evidence from the Eastern Branch of Neotethys Subduction-Related Mantle Enrichment. Geotecton. 53, 786–805 (2019). https://doi.org/10.1134/S0016852119060098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852119060098

Keywords:

Navigation