Skip to main content
Log in

Seismological Evidence for Lithospheric Low-Velocity Anomalies beneath the Eastern Mediterranean: Impact of Tectonics

  • Published:
Geotectonics Aims and scope

Abstract

Being a part of the eastern Mediterranean, northern Lebanon and northwestern Syria is a seismotectonically active region due to the juxtaposition of several plate boundaries, the existence of many active faults, and the intense seismicity generated along rifting, transform, and convergent plate boundaries. We applied a tomographic inversion on seismic body wave arrivals recorded at 12 seismic stations distributed in the northern part of Lebanon and northwestern Syria to study the P- and S-wave velocity (Vp, and Vs) structures and the seismogenic behavior of the upper portion of the lithosphere. The seismic data comprise 4855 and 2950 P- and S-wave arrivals, respectively, generated by 605 local crustal earthquakes which occurred mainly along the Yammouneh Fault and splays in the Eastern Mediterranean. The crustal structure is highly heterogeneous down to the upper mantle depths. Low-velocity (low-V) anomalies are widely distributed especially along the active faults delimiting the boundary between the Arabian and African plates and areas of thick sedimentary deposits and Cenozoic volcanics. Results of the checkerboard resolution test and hit count coverage indicate that the mapped velocity anomalies are reliable features. Furthermore, they are generally consistent with many geological and geophysical investigations which have been detected beneath the study area by other researchers including the emplacement of ophiolite rocks, Cenozoic volcanics, inefficient Sn propagation, low Lg Q values, and low seismic wave velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. M. K. Abdul-Wahed, J. Asfahani, and I. Al-Tahhan, “A  methodology of multiplet and composite focal mechanism techniques for identifying seismologically active zones in Syria,” Acta Geophys. 59, 967‒992 (2011).

    Article  Google Scholar 

  2. K. Aki and W. H. K. Lee, “Determination of the three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: Part 1. A homogeneous initial model,” J. Geophys. Res. 81, 4381‒4399 (1976).

    Article  Google Scholar 

  3. K. Al-Damegh, E. Sandvol, A. Al-Lazki, and M. Barazangi, “Regional seismic wave propagation (Lg and Sn) and Pn attenuation in the Arabian plate and surrounding regions,” Geophys. J. Int. 157, 775–795 (2004).

    Article  Google Scholar 

  4. M. A. Al Kwatli, P. Y. Gillot, J. C. Lefèvre, and A. Hildenbrand, “Morpho-structural analysis of Harrat Al Sham volcanic field Arabian plate (Syria, Jordan, and Saudi Arabia): methodology and application,” Arab. J. Geosci. 8, 6867–6880 (2015).

    Article  Google Scholar 

  5. M. A. Al Kwatli, P. Y. Gillot, H. Zeyen, A. Hildenbrand, and I. Al Gharib, “Volcano-tectonic evolution of the northern part of the Arabian plate in the light of new K-Ar ages and remote sensing: Harrat Ash Shaam volcanic province (Syria),” Tectonophysics. 580, 192–207 (2012).

    Article  Google Scholar 

  6. A. I. Al-Lazki, E. Sandvol, D. Seber, M. Barazangi, N. Turkelli, and R. Mohamad, “Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian, and African plates,” Geophys. J. Int. 158, 1024‒1040 (2004).

    Article  Google Scholar 

  7. Kh. Al-Riyami, A. Robertson, J. Dixon, and C. Xenophontos, “Origin and emplacement of the Late Cretaceous Baer–Bassit ophiolite and its metamorphic sole in NW Syria,” Lithos. 65, 225–260 (2002).

    Article  Google Scholar 

  8. D. Al-Saad, T. Sawaf, A. Gebran, M. Barazangi, J. A. Best, and T. A. Chaimov, “Crustal structure of central Syria: the intracontinental Palmyride mountain belt,” Tectonophysics. 207, 345‒358 (1992).

    Article  Google Scholar 

  9. M. Alsouki and R. Taifour, “The tectono-depositional evolution of the Syrian Euphrates Graben area using the 3D seismic data,” Arab. J. Geosci. 8, 7577–7587 (2015).

    Article  Google Scholar 

  10. N. N. Ambraseys and J. A. Jackson, “Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region,” Geophys. J. Int. 133, 390–406 (1998).

    Article  Google Scholar 

  11. J. Asfahani and M. K. Abdul-Wahed, “Evaluation of earthquake activity along the Serghaya fault, Syria, from instrumental seismic data.” Acta Geophys. 61, 37‒59 (2013).

    Article  Google Scholar 

  12. J. Asfahani and R. Darawcheh, “Seismicity assessment in and around Syria based on instrumental data: application of Gumbel distributions and Gutenberg-Richter relationship,” Arab. J. Geosci. 10, Art. No. 86 (2017). https://doi.org/10.1007/s12517-017-2862-y

    Article  Google Scholar 

  13. M. Barazangi, D. Seber, T. Chaimov, J. Best, R. Litak, D. Al-Saad, and T. Sawaf, “Tectonic evolution of the northern Arabian plate in western Syria,” in Recent Evolution and Seismicity of the Mediterranean Region, Ed. by E. Boschi, E. Mantovani, and A. Morelli (Kluwer, Dordrecht, 1993), pp. 117‒140.

    Google Scholar 

  14. Th. W. Becker and C. Faccenna, “Mantle conveyor beneath the Tethyan collisional belt,” Earth Planet. Sci. Lett. 310, 453‒461 (2011).

    Article  Google Scholar 

  15. Th. W. Becker, S. Lebedev, and M. D. Long, “On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography,” J. Geophys. Res.: Solid Earth 117 (2012).

  16. M. Benoit, A. Nyblade, and J. VanDecar, “Upper mantle P-wave speed variations beneath Ethiopia and the origin of the Afar hotspot,” Geology 34, 329–332 (2006).

    Article  Google Scholar 

  17. S. Bou Daher, M. Ducros, P. Michel, N. Hawie, F. H. Nader, and R. Littke, “3D thermal history and maturity modelling of the Levant Basin and its eastern margin, offshore–onshore Lebanon,” Arab. J. Geosci. 9, Art. No. 440 (2016). https://doi.org/10.1007/s12517-016-2455-1

    Article  Google Scholar 

  18. G. Brew, M. Barazangi, T. Sawaf, and A. K. Al-Maleh, “Tectonic map and geologic evolution of Syria: The role of GIS,” The Leading Edge. 19(2), 176‒182 (2000).

    Article  Google Scholar 

  19. S. C. Cande and D. R. Stegman, “Indian and African plate motions driven by the push force of the Réunion plume head,” Nature. 475, 47–52 (2011).

    Article  Google Scholar 

  20. H. Carton, S. C. Singh, P. Tapponnier, A. Elias, A. Briais, A. Sursock, R. Jomaa, G. C. P. King, M. Daëron, E. Jackues, and L. Barrier “Seismic evidence for Neogene and active shortening offshore of Lebanon (Shalimar cruise),” J. Geophys. Res.: Solid Earth 114 (2009).

  21. T. A. Chaimov, M. Barazangi, D. Al-Saad, T. Sawaf, and A. Gebran, “Crustal shortening in the Palmyride fold belt, Syria, and implications for movement along the Dead Sea fault system,” Tectonics. 9, 1369‒1386 (1990).

    Article  Google Scholar 

  22. S.-J. Chang, M. Merino, S. Van der Lee, S. Stein, and C. A. Stein, “Mantle flow beneath Arabia offset from the opening Red Sea,” Geophys. Res. Lett. 38 (2011).

    Article  Google Scholar 

  23. S. J. Chang, S. Van der Lee, M. P. Flanagan, H. Bedle, F. Marone, E. M. Matzel, M. E. Pasyanos, A. J. Rodgers, B. Romanowicz, and C. Schmid, “Joint inversion for three-dimensional S velocity mantle structure along the Tethyan margin,” J. Geophys. Res.: Solid Earth. 115 (2010).

  24. S.-J. Chang and S. Van der Lee, “Mantle plumes and associated flow beneath Arabia and East Africa,” Earth Planet. Sci. Lett. 302, 448–454 (2011).

    Article  Google Scholar 

  25. N. I. Christensen, “Ophiolites, seismic velocities and oceanic crustal structure,” Tectonophysics 47, 131‒157 (1978).

    Article  Google Scholar 

  26. A.-L. Develle, F. Gasse, L. Vidal, D. Williamson, F. Demory, E. Van Campo, B. Ghaleb, and N. Thouveny, “A 250 ka sedimentary record from a small karstic lake in the Northern Levant (Yammoûneh, Lebanon): Paleoclimatic implications,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 305, 10–27 (2011).

    Article  Google Scholar 

  27. Y. Dilek and M. F. J. Flower, “Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman,” in Ophiolites in Earth History, vol. 218 of Geol. Soc. London, Spec. Publ., Ed. by Y. Dilek and P. T. Robinson (London, 2003), pp. 43–68.

  28. A. Elias, P. Tapponnier, S. C. Singh, G. C. P. King, A. Briais, M. Daëron, H. Carton, A. Sursock, E. Jacques, R. Jomaa, and Y. Klinger, “Active thrusting offshore Mount Lebanon: Source of the tsunamigenic 551 A.D. Beirut-Tripoli earthquake,” Geology. 35, 755‒758 (2007).

    Article  Google Scholar 

  29. M. Ergin, M. Aktar, and H. Eyidŏgan, “Present-day seismicity and seismotectonics of the Cilician Basin: Eastern Mediterranean Region of Turkey,” Bull. Seismol. Soc. Am. 94, 930‒939 (2004).

    Article  Google Scholar 

  30. C. Faccenna, Th. W. Becker, L. Jolivet, and M. Keskin, “Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback,” Earth Planet. Sci. Lett. 375, 254–269 (2013).

    Article  Google Scholar 

  31. Z. Garfunkel, I. Zak, and R. Freund, “Active faulting in the Dead Sea rift,” Tectonophysics 80, 1‒26 (1981).

    Article  Google Scholar 

  32. R.W. Girdler, “The Dead Sea transform fault system,” Tectonophysics. 180, 1–13 (1990).

    Article  Google Scholar 

  33. H. Gürsoy, O. Tatar, J. D. A. Piper, A. Heimann, and L. Mesci, “Neotectonic deformation linking the east Anatolian and Karatas-Osmaniye intracontinental transform fault zones in the Gulf of Iskenderun, southern Turkey, deduced from paleomagnetic study of the Ceyhan-Osmaniye volcanics,” Tectonics. 22, (2003).

    Article  Google Scholar 

  34. S. E. Hansen, A. A. Nyblade, and M. H. Benoit, “Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: Implications for the origin of Cenozoic Afro-Arabian tectonism,” Earth Planet. Sci. Lett. 319–320, 23–34 (2012).

    Article  Google Scholar 

  35. M. Harajli, S. Sadek, and R. Asbahan, “Evaluation of the seismic hazard of Lebanon,” J. Seismol. 6, 257‒277 (2002).

    Article  Google Scholar 

  36. H. Horen, M. Zamora, and G. Dubuisson, “Seismic wave velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge,” Geophys. Res. Lett. 23, 9‒12 (1996).

    Article  Google Scholar 

  37. H. Inoue, Y. Fukao, K. Tanabe, and Y. Ogata, “Whole mantle P-wave travel time tomography,” Phys. Earth Planet. Int. 59, 294‒328 (1990).

    Article  Google Scholar 

  38. B. L. N. Kennett and E.R. Engdahl, “Travel times for global earthquake location and phase association,” Geophys. J. Int. 105, 429‒465 (1991).

    Article  Google Scholar 

  39. Y. Klinger, J. P. Avouac, N. Abouh Karaki, and N. Tisnerat, “Seismic behavior of the Dead Sea fault along Araba valley, Jordan,” Geophys. J. Int. 142, 769–782 (2000).

    Article  Google Scholar 

  40. M. Lazar, Z. Ben-Avraham, and Z. Garfunkel, “The Red Sea—New insights from recent geophysical studies and the connection to the Dead Sea fault,” J. Afr. Earth Sci. 68, 96‒110 (2012).

    Article  Google Scholar 

  41. S. Lebedev and R. D. van der Hillst, “Global upper-mantle tomography with the automated multimode inversion of surface and S-waveforms,” Geophys. J. Int. 173, 505–518 (2008).

    Article  Google Scholar 

  42. B. R. Lienert, E. Berg, and L. N. Frazer, “Hypocenter: an earthquake location method using centered, scaled, and adaptively least squares,” Bull. Seismol. Soc. Am. 76, 771‒783 (1986).

    Google Scholar 

  43. F. Mouthereau, O. Lacombe, and J. Vergés, “Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence,” Tectonophysics. 532–535, 27–60 (2012).

    Article  Google Scholar 

  44. F. H. Nader, The Geology of Lebanon (Scientific Press, U. K., 2014).

    Google Scholar 

  45. M. Palano, P. Imprescia, and S. Gresta, “Current stress and strain-rate fields across the Dead Sea Fault System: Constraints from seismological data and GPS observations,” Earth Planet. Sci. Lett. 369–370, 305‒316 (2013).

    Article  Google Scholar 

  46. Y. Park, A. A. Nyblade, A. Rodgers, and A. Al-Amri, “Upper mantle structure beneath the Arabian Peninsula and northern Red Sea from teleseismic body wave tomography: implications for the origin of Cenozoic uplift and volcanism in the Arabian Shield,” Geochem., Geophys., Geosyst. 8 (2007). https://doi.org/10.1029/2006GC001566

    Article  Google Scholar 

  47. Y. Park, A. A. Nyblade, A. Rodgers, and A. Al-Amri, “S-wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography,” Geochem., Geophys., Geosyst. 9 (2008). https://doi.org/10.1029/2007GC001895

    Article  Google Scholar 

  48. O. Parlak, T. Rızaoğlu, U. Bağcı, F. Karaoğlan, and V. Höck “Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey,” Tectonophysics. 473, 173–187 (2009).

    Article  Google Scholar 

  49. M. E. Pasyanos and A. A. Nyblade, “A top to bottom lithospheric study of Africa and Arabia,” Tectonophysics. 444, 27–44 (2007).

    Article  Google Scholar 

  50. M. K. Salah, “Seismic anisotropy structure beneath the southeastern Mediterranean from shear-wave splitting,” Arab. J. Geosci. 6, 1717–1730 (2013).

    Article  Google Scholar 

  51. M. K. Salah, “Upper crustal structure beneath Southwest Iberia north of the convergent boundary between the Eurasian and African plates,” Geoscience Frontiers. 5, 845‒854 (2014).

    Article  Google Scholar 

  52. M. K. Salah and D. Zhao, “3D seismic structure of Kii Peninsula in southwest Japan: evidence for slab dehydration in the forearc,” Tectonophysics. 364, 191–213 (2003).

    Article  Google Scholar 

  53. A. Salamon, A. Hofstetter, Z. Garfunkel, and H. Ron, “Seismotectonics of the Sinai subplate—the Eastern Mediterranean region,” Geophys. J. Int. 155, 149‒173 (2003).

    Article  Google Scholar 

  54. M. R. Sbeinati, R. Darawcheh, and M. Mouty, “The historical earthquakes of Syria: an analysis of large and moderate earthquakes from 1365 BC to 1900 AD,” Ann. Geophys. 48, 347–435 (2005).

    Google Scholar 

  55. D. Seber, M. Barazangi, Th. A. Chaimov, D. Al-Saad, T. Sawaf, and M. Khaddour, “Upper crustal velocity structure and basement morphology beneath the intracontinental Palmyride fold-thrust belt and north Arabian platform in Syria,” Geophys. J. Int. 113, 752‒766 (1993).

    Article  Google Scholar 

  56. O. Tatar, J. D. A. Piper, H. Gürsoy, A. Heimann, and F. Koçbulut, “Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian Fault Zone, Southern Turkey: A palaeomagnetic study of the Karasu Rift volcanism,” Tectonophysics. 385, 17–43 (2004).

    Article  Google Scholar 

  57. T. Taymaz, R. Westaway, and R. Reilinger, “Editorial: Active faulting and crustal deformation in the Eastern Mediterranean region,” Tectonophysics 391, 1–9 (2004).

    Article  Google Scholar 

  58. D. J. van Hinsbergen, B. Steinberger, P. Doubrovine, and R. Gassmöller, “Acceleration–deceleration cycles of India–Asia convergence: Roles of mantle plumes and continental collision,” J. Geophys. Res.: Solid Earth. 116 (2011).

  59. C. D. Walley, “A braided strike-slip model for the northern continuation of the Dead Sea fault, and its implications to Levantine tectonics,” Tectonophysics. 145, 63–72 (1988). https://doi.org/10.1016/0040-1951(88)90316-2

    Article  Google Scholar 

  60. P. Wessel and W. H. F. Smith, “New improved version of Generic Mapping Tools released,” EOS Trans., AGU. 79, 579 (1998).

    Article  Google Scholar 

  61. R. Westaway, “Kinematic consistency between the Dead Sea Fault Zone and the Neogene and Quaternary left-lateral faulting in SE Turkey,” Tectonophysics. 391, 203‒237 (2004).

    Article  Google Scholar 

  62. S. Yolsal-Çevikbilen, “Seismic anisotropy along the Cyprean arc and northeast Mediterranean Sea inferred from shear wave splitting analysis,” Phys. Earth Planet. Inter. 233, 112–134 (2014).

    Article  Google Scholar 

  63. D. Zhao, “New advances of seismic tomography and its applications to subduction zones and earthquake fault zone: A review,” Island Arc. 10, 68‒84 (2001).

    Article  Google Scholar 

  64. D. Zhao, Multiscale Seismic Tomography (Springer, New York, 2015).

    Book  Google Scholar 

  65. D. Zhao, A. Hasegawa, and S. Horiuchi, “Tomographic imaging of P and S wave velocity structure beneath northeastern Japan,” J. Geophys. Res.: Solid Earth. 97, 19909‒19928 (1992).

    Article  Google Scholar 

  66. D. Zhao, A. Hasegawa, and H. Kanamori, “Deep structure of Japan subduction zones as derived from local, regional and teleseismic events,” J. Geophys. Res.: Solid Earth. 99, 22 313‒22 329 (1994).

    Article  Google Scholar 

  67. D. Zhao, H. Kanamori, H. Negishi, and D. Wiens, “Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter?,” Science. 274, 1891–1894 (1996).

    Article  Google Scholar 

  68. D. Zhao, T. Yanada, A. Hasegawa, N. Umino, and W. Wei, “Imaging the subducting slabs and mantle upwelling under the Japan Islands,” Geophys. J. Int. 190, 816‒828 (2012).

    Article  Google Scholar 

  69. E. Zor, E. Sandvol, J. Xie, N. Türkelli, B. Mitchell, A. H. Gasanov, and G. Yetirmishli, “Crustal attenuation within the Turkish Plateau and surrounding regions,” Bull. Seismol. Soc. Am. 97 (1B), 151–161 (2007).

    Article  Google Scholar 

  70. International Seismological Center (ISC) bulletins. http://www.isc.ac.uk/iscbulletin/. Accessed July 1, 2019.

  71. National Center for Geophysical Research (NCGR), Lebanese National Council for Scientific Research (CNRS). http://www.cnrs.edu.lb/grdownload.html. Accessed July 1, 2019.

Download references

ACKNOWLEDGMENTS

Hypocenters of the large, crustal, earthquakes are obtained from the earthquake catalogs reported by the National Earthquake Information Center (NEIC) (USA), whereas local earthquake arrival times are collected from the on-line ISC published bulletins and the National Center for Geophysical Research division of the Lebanese National Council for Scientific Research (CNRS). Most figures in this paper are made using GMT (Generic Mapping Tools) software which was written by Wessel and Smith [60].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Salah.

Ethics declarations

This research has been partially covered by a grant from the University Research Board (URB) of the American University of Beirut (Award# 103 186; Project# 23 244).

Additional information

Reviewer E.A. Rogozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, M.K. Seismological Evidence for Lithospheric Low-Velocity Anomalies beneath the Eastern Mediterranean: Impact of Tectonics. Geotecton. 53, 617–633 (2019). https://doi.org/10.1134/S0016852119050054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852119050054

Keywords:

Navigation