Skip to main content
Log in

Apoptosis inhibition mitigates aging effects in Drosophila melanogaster

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Aging is a natural biological process that results in progressive loss of cell, tissue, and organ function. One of the causing factors of the aging process is the decrease in muscle mass, which has not been fully verified in Drosophila. Apoptotic cell death may result in aberrant cell loss and can eventually diminish tissue function and muscle atrophy. If so, inhibition of apoptosis may prolong longevity and reduce motor function and muscle mass decline with age in Drosophila flies. Here, we used Drosophila melanogaster as study material, and induced the overexpression of Drosophila inhibitor of apoptosis protein 1 gene to inhibit apoptosis, and investigated the effect of apoptosis inhibition on the longevity and age-related declines in flight and climbing ability and muscle mass. As a result, the inhibition of apoptosis tended to mitigate the aging effects and prolonged longevity and reduced climbing ability decline with age. The current study suggests that apoptosis inhibition could mitigate the aging effects in D. melanogaster. Although such effects have already been known in mammals, the current results suggest that the apoptosis may play a similar role in insects as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alway SE, Degens H, Krishnamurthy G, Chaudhrai A (2003) Denervation stimulates apoptosis but not Id2 expression in hindlimb muscles of aged rats. J Gerontol A 58:687–697

    Article  Google Scholar 

  • Arck PC et al (2006) Towards a “free radical theory of graying”: melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB J 20:1567–1569

    Article  CAS  Google Scholar 

  • Avin KG et al (2014) Skeletal muscle as a regulator of the longevity protein, Klotho. Front Physiol 5:1–9

    Article  Google Scholar 

  • Bargiela A, Cerro-Herreros E, Fernandez-Costa JM, Vilchez JJ, Llamusi B, Artero R (2015) Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model. Dis Model Mech 8:679–690

    Article  CAS  Google Scholar 

  • Curtsinger JW, Fukui HH, Khazaeli AA, Kirscher A, Pletcher SD, Promislow DE, Tatar M (1995) Genetic variation and aging. Annu Rev Genet 29:553–575

    Article  CAS  Google Scholar 

  • Demontis F, Piccirillo R, Goldberg AL, Perrimon N (2013) The influence of skeletal muscle on systemic aging and lifespan. Aging Cell 12:943–949

    Article  CAS  Google Scholar 

  • Deveraux QL, Takahsahi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–304

    Article  CAS  Google Scholar 

  • Dirks A, Leeuwenburgh C (2002) Apoptosis in skeletal muscle with aging. Am J Physiol Regul Integr Comp Physiol 282:R519–R527

    Article  CAS  Google Scholar 

  • Dirks AJ, Leeuwenburgh C (2004) Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med 36:27–39

    Article  CAS  Google Scholar 

  • Dirks AJ, Leeuwenburgh C (2005) The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 35:473–483

    Article  Google Scholar 

  • Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev 4:372–397

    Article  CAS  Google Scholar 

  • Hay BA, Guo M (2006) Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 22:623–650

    Article  CAS  Google Scholar 

  • Hay BA, Huh JR, Guo M (2004) The genetics of cell death: approaches, insights and opportunities in Drosophila. Nat Rev Genet 5:911–922

    Article  CAS  Google Scholar 

  • Higami Y, Shimokawa I, Okimoto T, Tomita M, Yuo T, Ikeda T (1997) Effect of aging and dietary restriction on hepatocyte proliferation and death in male F344 rats. Cell Tissue Res 288:69–77

    Article  CAS  Google Scholar 

  • Jazwinski SM (2000) Aging and longevity genes. Acta Biochim Pol 47:269–279

    Article  CAS  Google Scholar 

  • Lane SJ, Frankino WA, Elekonich MM, Roberts SP (2014) The effects of age and lifetime flight behavior on flight capacity in Drosophila melanogaster. J Exp Biol 217:1437–1443

    Article  Google Scholar 

  • Maier B et al (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18:306–319

    Article  CAS  Google Scholar 

  • Martin I, Grotewiel MS (2006) Distinct genetic influences on locomotor senescence in Drosophila revealed by a series of metrical analyses. Exp Gerontol 41:877–881

    Article  CAS  Google Scholar 

  • Martinez VG, Javadi CS, Ngo E, Ngo L, Lagow RD, Zhang B (2007) Age-related changes in climbing behavior and neural circuit physiology in Drosophila. Dev Neurobiol 67:778–791

    Article  CAS  Google Scholar 

  • Meier P, Silke J, Leevers SJ, Evan GI (2000) The Drosophila caspase DRONC is regulated by DIAP1. EMBO J 19:598–611

    Article  CAS  Google Scholar 

  • Migliaccio E et al (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    Article  CAS  Google Scholar 

  • Miller MS et al (2008) Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila. Biophys J 95:2391–2401

    Article  CAS  Google Scholar 

  • Montana ES, Littleton JT (2006) Expression profiling of a hypercontraction-induced myopathy in Drosophila suggests a compensatory cytoskeletal remodeling response. J Biol Chem 281:8100–8109

    Article  CAS  Google Scholar 

  • Oberst A, Bender C, Green DR (2008) Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 15:1139–1146

    Article  CAS  Google Scholar 

  • Ost M et al (2015) Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux. FASEB J 29:1314–1328

    Article  CAS  Google Scholar 

  • Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:699–712

    Article  CAS  Google Scholar 

  • Pecasse F, Beck Y, Ruiz C, Richards G (2000) Kruppel-homolog, a stage-specific modulator of the prepupal ecdysone response, is essential for Drosophila metamorphosis. Dev Biol 221:53–67

    Article  CAS  Google Scholar 

  • Peterson JS, Barkett M, McCall K (2003) Stage-specific regulation of caspase activity in drosophila oogenesis. Dev Biol 260:113–123

    Article  CAS  Google Scholar 

  • Pollack M, Phaneuf S, Dirks A, Leeuwenburgh C (2002) The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann NY Acad Sci 959:93–107

    Article  CAS  Google Scholar 

  • Rai M, Nongthomba U, Grounds MD (2014) Skeletal muscle degeneration and regeneration in mice and flies. Curr Top Dev Biol 108:247–281

    Article  CAS  Google Scholar 

  • Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16:6914–6925

    Article  CAS  Google Scholar 

  • Shiga S, Kogawauchi S, Yasuyama K, Yamaguchi T (1991) Flight behaviour and selective degeneration of flight muscles in the adult cricket (Gryllus bimaculatus). J Exp Biol 155:661–667

    Google Scholar 

  • Siu PM, Alway SE (2006) Deficiency of the Bax gene attenuates denervation-induced apoptosis. Apoptosis 11:967–981

    Article  CAS  Google Scholar 

  • Song W, Kwak HB, Lawler JM (2006) Exercise training attenuates age-induced changes in apoptotic signaling in rat skeletal muscle. Antioxid Redox Signal 8:517–528

    Article  CAS  Google Scholar 

  • Swank DM (2012) Mechanical analysis of Drosophila indirect flight and jump muscles. Methods 56:69–77

    Article  CAS  Google Scholar 

  • Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, Reed JC (1998) IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 58:5315–5320

    CAS  PubMed  Google Scholar 

  • Tyner SD et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415:45–53

    Article  CAS  Google Scholar 

  • Venkatachalam K, Long AA, Elsaesser R, Nikolaeva D, Broadie K, Montell C (2008) Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135:838–851

    Article  CAS  Google Scholar 

  • Zheng J, Edelman SW, Tharmarajah G, Walker DW, Pletcher SD, Seroude L (2005) Differential patterns of apoptosis in response to aging in Drosophila. Proc Natl Acad Sci USA 102:12083–12088

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo H. Takahashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kidera, H., Hatabu, T. & Takahashi, K.H. Apoptosis inhibition mitigates aging effects in Drosophila melanogaster. Genetica 148, 69–76 (2020). https://doi.org/10.1007/s10709-020-00088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-020-00088-1

Keywords

Navigation