Skip to main content

Advertisement

Log in

Genetic approach reveals a polygynous-polyandrous mating system and no social organization in a small and isolated population of the screaming hairy armadillo, Chaetophractus vellerosus

  • Short Communication
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The development of agro-ecosystems in the pastures of the Pampean Region has substantially modified their structure and functioning. Many wild mammal populations in the Argentinean Pampas face habitat loss and/or fragmentation due to human activities, resulting in harmful genetic effects. The screaming hairy armadillo (Chaetophractus vellerosus) is a species considered an indicator of the state of preservation of the environments it inhabits. However, very little information is available about its mating system in the wild. In this sense, an isolated population of the screaming hairy armadillo in the northeast of Buenos Aires Province, which is separated from the main distribution area of the species by about 500 km, requires special attention. Genetic studies that analyzed social behavior and mating systems in Xenarthra are scarce but necessary to establish conservation actions for the isolated screaming hairy armadillo population under study. Thus, we analyzed the existence of a possible social organization in the species, together with its mating system, using a set of previously characterized microsatellites. Our results showed a complex scenario for the dispersal and mating system in this C. vellerosus population. Males disperse and females have a philopatric tendency with some degree of dispersal. This strategy, in combination with a polygynous-polyandrous mating system, could enhance genetic variability in this small and isolated population. In addition, no evidence of social organization was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Abba AM, Vizcaíno SF, Cassini MH (2007) Effects of land use on the distribution of three species of armadillos in the Argentinean pampas. J Mammal 88:502–507

    Google Scholar 

  • Abba AM, Cassini MH (2010) Ecological differences between two sympatric species of armadillos (Xenarthra, Mammalia) in a temperate region of Argentina. Acta Theriol 55:35–44

    Google Scholar 

  • Abba AM, Superina M (2010) The 2009/2010 Armadillo red list assessment. Edentata 11:135–184

    Google Scholar 

  • Abba AM, Cassini GH, Cassini MH, Vizcaíno SF (2011) Historia natural del piche llorón Chaetophractus vellerosus (Mammalia: Xenarthra: Dasypodidae). Rev Chil Hist Nat 84:51–64

    Google Scholar 

  • Abba AM, Benitez VV, Doyle SR (2017) Population ecology of Chaetophractus vellerosus: the first report for an armadillo in South America. Zoologia 34:e20785

    Google Scholar 

  • Abba AM, Camino M, Torres RM, Ferreiro AM, Tamburini DM, Decarre J, Soibelzon E, Castro LB, Rogel TG, Agüero AJ, Albrecht CD, Superina M (2019) Chaetophractus vellerosus. Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción. Lista Roja de los mamíferos de Argentina. http://cma.sarem.org.ar. Accessed 21 Dec 2019

  • Bilenca D, Codesido M, Fischer CG, Carusi LP, Zufiaurre E, Abba A (2012) Impactos de la transformación agropecuaria sobre la biodiversidad en la provincia de Buenos Aires. Rev Mus Argent Cienc Nat 14:189–198

    Google Scholar 

  • Binns LA (2013) Spatial genetic structure of the nine-banded armadillo in western Mississippi. Doctoral Dissertation, Valdosta State University

  • Carlini AA, Vizcaino SF (1987) A new record of the armadillo Chaetophractus vellerosus (Gray, 1865) (Mammalia, Dasypodidae) in the Buenos Aires Province of Argentine: possible causes for the disjunct distribution. Stud Neotrop Fauna Environ 22:53–56

    Google Scholar 

  • Collevatti RG, Leite KC, de Miranda GH, Rodrigues FH (2007) Evidence of high inbreeding in a population of the endangered giant anteater, Myrmecophaga tridactyla (Myrmecophagidae), from Emas National Park, Brazil. Genet Mol Biol 30:112–120

    Google Scholar 

  • Crespo JA (1974) Comentarios sobre nuevas localidades para mamíferos de Argentina y de Bolivia. Rev Mus Argent Cienc Nat 11:1–31

    Google Scholar 

  • Darden SK, Croft DP (2008) Male harassment drives females to alter habitat use and leads to segregation of the sexes. Biol Lett 4(5):449–451. https://doi.org/10.1098/rsbl.2008.0308

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobler D, Ibañez EA, Abba AM, Túnez JI, Nardelli M (2016) Introducción al estudio del comportamiento social de Chaetophractus vellerosus mediante el uso de marcadores moleculares en una población aislada y afectada por el impacto antrópico. XXIX Jornadas Argentinas de Mastozoología, San Juan

    Google Scholar 

  • Dobson FS, Jones WT (1985) Multiple causes of dispersal. Am Nat 126:855–858

    Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Garcés-Restrepo MF, Peery MZ, Reid B, Pauli JN (2017) Individual reproductive strategies shape the mating system of tree sloths. J Mammal 98:1417–1425

    Google Scholar 

  • Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636

    Google Scholar 

  • Hilty JA, Lidicker WZ Jr, Merenlender AM (2012) Corridor ecology: the science and practice of linking landscapes for biodiversity conservation. Island Press, Washington, DC

    Google Scholar 

  • Hughes C (1998) Integrating molecular techniques with field methods in studies of social behavior: a revolution results. Ecology 79:383–399

    Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Res 10:551–555

    Google Scholar 

  • Kitchen AM, Gese EM, Waits LP, Karki SM, Schauster ER (2006) Multiple breeding strategies in the swift fox, Vulpes velox. Anim Behav 71:1029–1038

    Google Scholar 

  • Loughry WJ, McDonough CM (1998) Spatial patterns in a population of nine-banded armadillos (Dasypus novemcinctus). Am Mid Nat 140:161–170

    Google Scholar 

  • Loughry WJ, McDonough CM (2001) Natal recruitment and adult retention in a population of nine-banded armadillos. Acta Theriol 46:393–406

    Google Scholar 

  • Manel S, Berthier P, Luikart G (2002) Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conserv Biol 16:650–659

    Google Scholar 

  • McDonough CM (2000) Social organization of nine-banded armadillos (Dasypus novemcinctus) in a riparian habitat. Am Mid Nat 144:139–152

    Google Scholar 

  • Meagher S, Penn DJ, Potts WK (2000) Male-male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci USA 97:3324–3329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Møller AP, Legendre S (2001) Allee effect, sexual selection and demographic stochasticity. Oikos 92:27–34

    Google Scholar 

  • Nardelli M, Ibañez EA, Dobler D, Justy F, Delsuc F, Abba AM, Cassini MH, Túnez JI (2016) Genetic structuring in a relictual population of screaming hairy armadillo (Chaetophractus vellerosus) in Argentina revealed by a set of novel microsatellite loci. Genetica 144:469–476

    PubMed  Google Scholar 

  • Newcomer SD, Zeh JA, Zeh DW (1999) Genetic benefits enhance the reproductive success of polyandrous females. Proc Natl Acad Sci USA 96:10236–10241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnutti N, Gallo J, Superina M, Vizcaíno SF, Abba AM (2014) Patrones estacionales de distribución espacial y área de acción del piche llorón, Chaetophractus vellerosus (Cingulata: Dasypodidae), en Magdalena, Buenos Aires, Argentina. Mastozool Neotrop 21:59–65

    Google Scholar 

  • Panhuis TM, Butlin R, Zuk M, Tregenza T (2001) Sexual selection and speciation. Trends Ecol Evol 16:364–371

    PubMed  Google Scholar 

  • Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Doctoral Dissertation, University of Dublin

  • Pauli JN, Peery MZ (2012) Unexpected strong polygyny in the brown-throated three-toed sloth. PLoS ONE 7:e51389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peery MZ, Pauli JN (2012) The mating system of a ‘lazy’ mammal, Hoffmann’s two-toed sloth. Anim Behav 84:555–562

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    PubMed  Google Scholar 

  • Raymond M (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Redford KH, Eisenberg JF (1992) Mamm Neotr. Chicago University Press, Chicago

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sigg DP, Goldizen AW, Pople AR (2005) The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies. Biol Conserv 123:289–300

    Google Scholar 

  • Superina M, Abba AM (2018) Chlamyphoridae. In: Wilson DE, Mittermeier RA (eds) Handbook of the mammals of the world. Lynx Edicions, Barcelona, pp 48–73

    Google Scholar 

  • Viglizzo EF, Frank FC, Carreño LV, Jobbagy EG, Pereyra H, Clatt J, Pincén D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob Change Biol 17:959–973

    Google Scholar 

  • Vizcaino SF, Loughry WJ (2008) The biology of the Xenarthra. University Press of Florida, Gainesville

    Google Scholar 

  • Waples RS (2015) Testing for Hardy–Weinberg proportions: have we lost the plot? J Hered 106(1):1–19

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. C. Ezquiaga and L. G. Pagano for their invaluable assistance during fieldwork. Special thanks go to Landa family (farm owners) and workers that allowed access to their property. This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 11220150100724 to J.I.T and Postdoctoral Grant to M.N.) and Departamento de Ciencias Básicas de la Universidad Nacional de Luján (Fondos Finalidad 3.5 2017-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximiliano Nardelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nardelli, M., Ibañez, E., Dobler, D. et al. Genetic approach reveals a polygynous-polyandrous mating system and no social organization in a small and isolated population of the screaming hairy armadillo, Chaetophractus vellerosus. Genetica 148, 125–133 (2020). https://doi.org/10.1007/s10709-020-00092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-020-00092-5

Keywords

Navigation